
1. Bevezetés

Az úgynevezett „lágy számítási” módszerek az 1960-as
években jöttek létre. Hatékonyságban felülmúlják a ko-
rábbi eljárásokat nagybonyolultságú, de ugyanakkor
szuboptimális megoldásokat elfogadó problématerüle-
teken. Ennek oka az, hogy ezek a technikák viszonylag
alacsony idô- és tárkomplexitással oldják meg a prob-
lémákat, illetve alkalmazhatók olyan esetekben is, ami-
kor a probléma analitikus leírása nem, vagy csak rész-
ben ismert, illetve amikor a területrôl szerezhetô tudás
bizonytalan. Ezeknek az elônyös tulajdonságoknak az
árát a megoldás pontatlanságában, szuboptimalitásában
kell megfizetni. Alkalmazhatóságuk így olyan problémák-
ra korlátozódik, melyekben a hatékonyság, a gyorsaság
fontos szempont, ellenben elfogadható némi pontosság-
beli hiányosság.

A lágy számítási módszerek három fô ágát a fuzzy

rendszerek, az evolúciós számítási technikák, illetve a
neurális hálózatok jelentik. Bár a fenti tulajdonságokkal
mind rendelkeznek, lényeges különbség van közöttük.

A fuzzy rendszerek, valamint a neurális hálózatok jó
modellezôképességûek. Alkalmasak olyan rendszerek
modellezésére, melyek szerkezetére nézve kezdetben
semmilyen (feketedoboz probléma), vagy hiányos isme-
retek állnak rendelkezésre (szürkedoboz probléma), vi-
szont ismertek, vagy megismerhetôk egyes bemenetek-
re adott válaszok. Ezekbôl a bemenet-kimenet párokból
tanulási folyamat révén fel tudnak építeni egy modellt,
melynek segítségével „utánozni tudják” a megtanult rend-
szereket. Nagy különbség a két lágy számítási megkö-
zelítés között az, hogy amíg a neurális hálózatok a prob-
lémáról nyert tudást az elemei közti összeköttetések-
ben lévô súlyokban hordozzák nehezen kinyerhetô és
még nehezebben, vagy egyáltalán nem interpretálható
formában, addig a fuzzy rendszerek eleve olyan szabály-
bázis építésével halmozzák fel a tudást, ahol minden in-

formáció explicit módon, interpretálható formában van
jelen. Ez nagy elôny a fuzzy rendszerek oldalán.

Az evolúciós számítási technikák voltaképpen szto-
chasztikus numerikus optimalizálási eljárások, melyek
a természetben megfigyelhetô különbözô evolúciós fo-
lyamatok mechanizmusát próbálják egyszerûsítve visz-
szaadni, ezzel törekedve az egyre optimálisabb megol-
dások felé hasonlóan, mint ahogyan az az élôvilágban
is megfigyelhetô versengésben zajlik.

Kedvezô tulajdonságaiknak köszönhetôen a lágy szá-
mítási módszereken alapuló intelligens mûszaki alkalma-
zások köre folyamatos bôvülést mutat a nagybonyolult-
ságú, szuboptimális megoldásokat elfogadó probléma-
területeken a robotikától [1] a különbözô szabályozás-
technikai [2] területeken keresztül a híradástechnikán
[3] át a kémiáig [4], vagy éppen a közgazdaságtanig [5].
Ennek következményeként az e módszerek közé tarto-
zó fuzzy szabálybázis alapú tanuló és következtetô rend-
szerek, mint intelligens rendszerkomponensek felhasz-
nálása is nô az említett, és megannyi más területeken.

A felsoroltak közül a híradástechnikát kiemelve el-
mondható, hogy alkalmaznak fuzzy rendszereket a táv-
közlésben útvonalválasztáshoz [6,7], torlódásirányítás-
hoz [8], hibaazonosításhoz [9] és még számos más
részterületen.

Tanuló és következtetô rendszerekrôl lévén szó, mi-
nôsíteni, értékelni ôket a következô alapvetô tulajdonsá-
gaik segítségével lehet: a tanulás és a tanulást követôen
a megtanult szabályok alapján történô következtetés idô-,
tárkomplexitása, valamint a tanulás pontossága, illetve
hibája.

Jelen cikk célja egy rövid összefoglalást adni az ilyen
típusú rendszerek koncepciójáról, illetve e rendszerek
evolúciós számítási technikák segítségével történô lét-
rehozásának lehetôségérôl. (Felépítésük bôvebb ismer-
tetése és mélyrehatóbb analízise megtalálható például
a [10] valamint [11] publikációkban.)
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Ezt a célkitûzést szem elôtt tartva a következô sza-
kasz ismerteti a fuzzy modellezés és következtetés kon-
cepcióját, betekintést ad a numerikus optimalizálás el-
méletébe, ezen belül is az evolúciós algoritmusokba,
valamint felvázolja az ellenôrzött gépi tanulás sémáját.
Ezután, a harmadik szakaszban a fuzzy szabályalapú ta-
nuló architektúrák kialakításának lehetôsége kerül tár-
gyalásra. A negyedik szakasz szimulációs futtatások
eredményein alapuló tömör összehasonlítását mutatja
be az ily módon létrehozott fuzzy rendszereknek. A c i k-
ket egy összefoglalás zárja, amely rávilágít az ismerte-
tett megközelítések fô tulajdonságaira és a különbözô
területeken való alkalmazhatóságára.

2. Az alkalmazott modellezô eszközök 

és technikák áttekintése

A fuzzy szabályalapú tanuló és következtetô rendsze-
rek létrehozása elméleti oldalról több területen is bizo-
nyos jártasságot igényel. Magától értetôdôen az egyik
ilyen terület a fuzzy szabályalapú modellezô és követ-
keztetô rendszerek elmélete [12,13], a másik pedig a
gépi tanulás [14,15]. Az elôbbihez szükséges a fuzzy
rendszerek alapkoncepciójának [12,16], továbbá a fuzzy
következtetô módszereknek, amíg az utóbbihoz a nu-
merikus optimalizálás egyes eljárásainak az ismerete
[17-22].

A következô pontok ezeknek az elméleteknek a rö-
vid, lényegre törô bemutatását tûzik ki célul.

2.1. A fuzzy rendszerek alapkoncepciója

Gyakran felmerül az igény arra vonatkozóan, hogy ma-
tematikailag modellezni lehessen olyan helyzeteket, ame-
lyekben adott tulajdonságok nem határozhatók meg tel-
jes pontossággal, vagy nem dönthetôk el teljes bizonyos-
sággal, azaz egyfajta „bizonytalansági modellezésre”
van szükség. A klasszikus halmazelmélet és az erre épü-
lô klasszikus logika azonban nem, vagy csak nagyon
körülményes módon alkalmas erre a feladatra. Ennek
következtében a halmazelmélet olyan irányú általáno-
sítása, mely egyszerûen, de hatékonyan alkalmazható
eszközt ad az ilyen bizonytalansági modellezéssel kap-
csolatos kihívásokra, elôzôleg megoldatlan, vagy prak-
t ikusan megoldhatatlan problémákra szolgáltatott ered-
ményt.

A fuzzy halmazok elmélete L. A. Zadehtôl származik
[16], aki az 1960-as években alkalmazta ôket elôször bi-
zonytalansági modellezésre. Az elgondolás a klasszi-
kus (crisp) halmazelmélettel szemben nem csak azt en-
gedi meg, hogy egy elem része legyen egy halmaznak
vagy sem, hanem azt is, hogy bizonyos mértékben legyen
csak része. Tehát amíg a crisp halmazelméletben egy
halmaz definiálható úgy, hogy felsoroljuk az elemeit, vagy
ezzel ekvivalens módon egy adott alaphalmaz minden
elemérôl megmondjuk, hogy az adott halmazhoz tarto-
zó-e, addig fuzzy halmazok esetén nem csupán az ele-
mek halmazhoz való tartozásának tényét, hanem annak
mértékét is megadhatjuk. Vagyis a crisp halmazelmélet-

tel szemben, ahol egy X alaphalmazbeli A halmazt meg-
határoz egy χA:X→{0,1} karakterisztikus függvény:

a fuzzy halmazelméletben az A halmazt az ô µA:X→[0,1]
tagsági függvénye határozza meg.

1. ábra 
Trapéz alakú tagsági függvénnyel definiált fuzzy halmaz

Az 1. ábrán szereplô és a hozzá hasonló úgynevezett
trapéz alakú tagsági függvények alkalmazása széles kör-
ben elterjedt. A jelen cikkben tárgyalt rendszerek is ilyen
trapéz alakú tagsági függvényekkel definiálható fuzzy
halmazokat alkalmaznak, illetve annak elfajult speciá-
lis eseteit: háromszög és szingleton (ez utóbbi esetén a
halmaz egyelemû). A szakaszonként lineáris tagsági függ-
vényeknek a töréspontjai a karakterisztikus pontok, me-
lyek segítségével a függvény által leírt fuzzy halmazok
könnyedén megadhatók. Az ábrán ezek az a, b, c, vala-
mint d jelölésû pontok.

A fuzzy halmazok szolgálnak a fuzzy halmazelmélet
alapjául. Segítségükkel többek között megkaphatjuk a
(szûkebb értelemben vett) fuzzy logikát. (Tágabb értelem-
ben véve minden fuzzy matematikát magába foglaló mód-
szercsaládot szokás fuzzy logikának nevezni [23].)

Eszerint a fuzzy logikában kézenfekvô módon leírha-
tó például egy olyan állítás, hogy valamely formula „félig-
meddig” igaz, vagy egy tulajdonság „többé-kevésbé” il-
lik egy elemre, hiszen mind az igazság fogalma, mind
pedig egy adott tulajdonsággal való rendelkezés reláci-
ója visszavezethetô halmazokba való tartozásokra.

2.2. Fuzzy szabálybázis alapú következtetô rendszerek

A fuzzy szabálybázis alapú következtetô rendszerek
egy adott k dimenziós X bemeneti problématér (alaphal-
maz) egy fuzzy részhalmazához (a rendszer bemenete)
– ami természetesen speciális esetben lehet az alap-
halmaz egyetlen eleme is – rendelik hozzá az Y kime-

neti tér egy fuzzy részhalmazát, illetve a defuzzifikáció
(lásd lejjebb) után a kimeneti tér egy elemét. Tehát felfog-
hatók egy P (X)→P (Y) függvényként (ahol P (X) és P (Y)
rendre X, illetve Y fuzzy hatványhalmazai).

Mivel minden többkimenetû függvény triviális módon
felírható egykimenetû függvények összességeként, ezért
a továbbiakban csak egy kimeneti dimenziós rendsze-
rekrôl esik szó.

Fuzzy szabályalapú modellek és rendszerek...
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2. ábra
A szabályalapú fuzzy következtetô rendszerek felépítése

A fuzzy szabályalapú következtetô rendszerek általá-
nos felépítését az 2. ábra [12] mutatja.

Az illeszkedési mérték meghatározása a rendszer be-
menetének (megfigyelés) az összehasonlítását jelenti a
szabálybázisban szereplô szabályok (Ri, i = 1...n) felté-

tel (antecedens) részével. A következtetô gép az egyes
szabályok következmény (konzekvens) részébôl egy ere-

dô következményt (következtetés, konklúzió) hoz létre
annak megfelelôen, hogy az egyes szabályok feltétel
része milyen mértékben illeszkedett a bemenetre. A de-

fuzzifikációs modul szerepe az, hogy az eredô következ-
ményként kapott fuzzy halmazból a kimeneti tér egy ele-
mét, vagyis egy crisp (nem fuzzy) értéket állítson elô.

A szabályalapú fuzzy következtetô rendszerek nagy
elônye a klasszikus következtetô rendszerekkel szem-
ben többek között az alacsonyabb számítási komplexi-
tás (sok bemenetû modellek esetén is), a következtetési
szabályok könnyû interpretálása, valamint a modellezen-
dô rendszer analitikus leírásának szükségtelensége. Az
elsô kedvezô tulajdonság abból ered, hogy a szabályok-
ban szereplô tagsági függvények rendszerint egyszerû-
en kezelhetô tulajdonságokkal bírnak, valamint a szabá-
lyok kiértékeléséhez könnyen elvégezhetô mûveletek
szükségesek.

E rendszerek másik elônye, a könnyû interpretálható-
ság abból ered, hogy a következtetési szabályokban úgy-
nevezett „nyelvi változók” szerepelnek, vagyis a szabá-
lyokban az egyes bemenô paraméterek értékei természe-
tes nyelven megfogalmazott „értékekkel” hasonlítódnak
össze (melyek valójában fuzzy halmazok tagsági függvé-
nyei). A szabályok úgynevezett Mamdani-féle, ortogoná-

lisan dekomponált alakja lehetôséget ad a szabályok
feltétel részeinek és a megfigyelésnek a dimenziónkén-
ti összevetésére, kialakítva az egyes szabályokhoz tar-
tozó következtetéseket [24]:

Ez a tulajdonság más tanuló architektúrákkal (pél-
dául a neurális hálózatokkal) összehasonlítva vitathatat-
lanul elônyös.

A harmadik tulajdonság oka az, hogy a fuzzy szabály-
bázis kinyeréséhez egyáltalán nem szükséges ismer-
nünk a modellezendô struktúrát, ugyanis vagy egy szak-
értô (aki a modellezendô folyamatról, rendszerrôl szabá-

lyokként megfogalmazható tapasztalatokkal rendelkezik)
bevonásával, vagy pedig úgynevezett „tanítóminták” (be-
menet-kimenet párok) segítségével hozzuk létre a sza-
bálybázist. Az utóbbi esetben (ellenôrzött) gépi tanulás-
ról beszélünk (lásd 2.4. szakasz). Természetesen a két le-
hetôség egyike sem nyújthat pontos modellt, mivel sem
a szakértô tudása, sem a tanítóminták nem fedhetnek le
minden lehetôséget, továbbá mind a szakértôi tapaszta-
latok, mind pedig a tanítóminták zajosak, pontatlanok.

Ennek ellenére törekedhetünk rendszerünk minél na-
gyobb pontosságára, hibájának minimalizálására, a lét-
rehozott szabálybázisban szereplô paraméterek finom
változtatásával. Ezt a folyamatot hangolásnak nevezzük,
amit végezhetünk manuálisan, illetve automatizáltan op-
timalizáló technikák segítségével.

2.3. Numerikus optimalizálás

A numerikus optimalizálás feladata egy (kényszerfel-
tételek által meghatározott) halmaz azon popt optimális
pontjának a megkeresése, amely pontban egy adott ƒopt

célfüggvény a globális optimumát (feladattól függôen ez
lehet maximum vagy minimum) felveszi. Tehát a cél egy
globális szélsôérték-keresési feladat elvégzése.

Erre a feladatra léteznek determinisztikus, illetve szto-
chasztikus, valamint analitikus és iteratív eljárások is.
Minél bonyolultabb, változatosabb a minimalizálandó függ-
vény, annál inkább az iteratív eljárások nyernek teret az
analitikusakkal szemben és minél több lokális minimum-
mal rendelkeznek, annál inkább a sztochasztikusak ér-
vényesülnek a determinisztikusak ellenében.

Az iteratív algoritmusok közül hatékony determinisz-
tikus eljárások az úgynevezett gradiens-módszerek, mint
például a legmeredekebb lejtô, momentum módszer, kon-
jugált gradiens eljárás, Newton-módszer, vagy a Leven-
berg-Marquardt algoritmus. Sikeres sztochasztikus eljá-
rások az úgynevezett evolúciós számítások, mint pél-
dául az evolúciós stratégiák, evolúciós programozás,
genetikus-, pszeudo-bakteriális-, vagy bakteriális algo-
ritmusok, illetve a részecske-sereg módszer.

2.3.1. Gradiens-módszerek

A gradiens-módszerek lényege az, hogy az adott ƒopt

célfüggvényen elfoglalt aktuális p pozícióban kiszámol-
juk a függvény gradiensét, majd a kapott értéket felhasz-
nálva „odébblépünk” a függvényen, vagyis módosítjuk
p értékét azzal a céllal, hogy minél optimálisabb (fela-
dattól függôen minél nagyobb, illetve minél kisebb) függ-
vényértéket kapjunk.

A lépegetések eredményeként kellôen sok iterációt
követôen a gradiens-módszerek a kiindulási pozícióhoz
esô „legközelebbi” lokális optimumot meglehetôsen pon-
tosan megtalálják, azonban a globális optimum elérésé-
hez, annak valamilyen környezetébôl kell indulniuk.

2.3.2. Evolúciós számítási módszerek

Bizonyos optimalizálási technikák a természetben
megfigyelhetô evolúciós folyamatok absztrakt leután-
zásai, ezért összefoglalóan evolúciós számításoknak ne-
vezzük ôket. Céljuk a „populáció” olyan formálása, ami
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során egyre „jobb” „egyedek” jönnek létre. Ha az „egye-
deket” (vagy „kromoszómákat”) egy probléma egy adott
megoldásának, a „populációt” a megoldások egy rész-
halmazának, a „jóságot” („fitness”) pedig az adott meg-
oldás optimalitásának feleltetjük meg, akkor az evolú-
ciós számítások célja nem más, mint egy problémára
az optimális megoldás(ok) megtalálása. 

Ennek érdekében elôször létrehozandó egy kezdeti
populáció, ami történhet az egyedek véletlenszerû ge-
nerálásával, vagy esetleg egy korábbi populáció felhasz-
nálásával. Ezt követôen minden iterációs ciklusban („ge-

nerációban”) a technikák az úgynevezett evolúciós ope-

rátorokat, vagy evolúciós mûveleteket alkalmazzák a
populáció egyes egyedein, vagy az egészén. Ezek során
az egyedek egyes „génjei” (a kromoszómáknak, vagyis
a megoldásoknak az elemi részei) megváltoztatják ér-
téküket. Új egyedek, úgynevezett „utódok” („leszárma-

zottak”) is kialakulhatnak a populációban lévô kromo-
szómák felhasználásával. Azokat az egyedeket, melyek
segítségével újak jönnek létre, „szülôknek” nevezzük.
Az operátorok szerepe az is, hogy meghatározzák az
egyedeknek azt a részét, amelyik átjut a következô ge-
nerációba. Elitista stratégia alkalmazása során minden
generáció populációjának legjobb egyede túlél, vagyis
átjut a következô generációba. Ezzel garantált, hogy a
mindenkori legjobb egyed nem veszik el, azaz valóban
az optimalizálás folyamán adódott legjobb megoldást
kapjuk meg optimálisként.

Ha az evolúciós algoritmusokban az egyedek külön-
bözô optimalizálandó pi paramétervektorokat, a gének
a különbözô vektorok komponenseit reprezentálják, a
fittness-érték pedig nô a célfüggvényen való jobb érték
felvételekor, akkor e technikák segítségével numerikus
optimalizálást végezhetünk. A továbbiakban tekintsük a
kromoszómákat paramétervektoroknak.

2.3.3. Memetikus algoritmusok

Az evolúciós számítási technikák jellegükbôl adó-
dóan feltérképezik az egész célfüggvényt, így kellôen
sok iterációt követôen eljutnak minden lokális optimum
közelébe. Azonban az egyes lokális optimumokhoz meg-
lehetôsen lassan konvergálhatnak.

A kétféle említett módszertípusok (gradiens és evo-
lúciós) kombinációjával is dolgozhatunk, ha például egy
genetikus algoritmus minden iterációjában valamennyi
kiválasztott egyedre végrehajtunk egy gradiens eljárást,
vagy ha ugyanezt megtesszük egy bakteriális algoritmus
minden iterációjában valamennyi egyedre. Az elôbbie-
ket memetikus algoritmusoknak [21], az utóbbiakat pe-
dig bakteriális memetikus [22] algoritmusoknak nevez-
zük. 

Ezeknek az az elônye adódik, hogy minden egyed
bekerül a hozzá legközelebbi lokális optimumba. Ezzel
ötvözni tudjuk a két megközelítés elônyeit, vagyis meg-
találjuk a lokális optimumokat elég pontosan (kellôen
sok gradiens iteráció után) az egész célfüggvényen (kel-
lôen sok genetikus iteráció után). Tehát meglehetôsen
nagy pontossággal kiadódik a globális optimum, azaz
az optimális popt paramétervektor.

2.4. Gépi tanulás

A gépi tanulás [14,15] elmélete arra törekszik, hogy
módszereket adjon ismeretek, készségek automatizált
elsajátítására. Eredményei számos területen alkalmaz-
hatók. Ilyen például a mûszaki, vagy orvosi diagnoszti-
kai felismerési feladatok (képfelismerés, beszédfelisme-
rés), folyamatszabályozás, vagy akár az elôrejelzés. Va-
lójában ezek a területek mind egy olyan közös, általános
problémának a speciális esetei, melynek megoldása a
gépi tanulás alapvetô célja. A gépi tanulásról ugyanis
általánosságban elmondható, hogy egy „modellezô rend-

szer” paramétereinek hangolását jelenti annak érdeké-
ben, hogy viselkedése minél jobban hasonlítson a „mo-

dellezett rendszer” viselkedéséhez.
Ezt a viselkedést bemenet-kimenet párokkal jellemez-

hetjük. Attól függôen, hogy milyen ismereteink vannak
a modellezett rendszerrôl, különbözô tanulási formák lé-
teznek. Ha a rendszer struktúrájára nézve nincs elôisme-
retünk, feketedoboz-rendszermodellezésrôl beszélünk.
Ebben az esetben a tanulás úgynevezett tanítóminták se-
gítségével történik. A tanítóminták lehetnek akár beme-
net-kimenet párok (felügyelt tanítás), vagy csak bemene-
tek (nem ellenôrzött tanítás). Lehetséges, hogy a tanító-
minta-halmazban bemenettel rendelkezô és nem rendel-
kezô minták is vannak (félig ellenôrzött tanítás). Elôfordul-
hat, hogy csak ritkán és akkor is csak pontatlan vissza-
jelzést kapunk a bemenetekre (megerôsítéses tanítás).
Az esetek mind különbözô megközelítéseket kívánnak.

Jelen cikk ellenôrzött tanítású rendszerekkel foglal-
kozik. E rendszerek felépítését a 3. ábra mutatja.

3. ábra  Az ellenôrzött tanítású rendszerek felépítése

A modellezô rendszer felparaméterezésétôl (p) függô
hiba (ε(p)) arról ad számot, hogy mennyire járunk közel
a célunkhoz, azaz mennyire hasonlít a modellezô a mo-
dellezett rendszerre. Értékét különbözô módokon defi-
n iálhatjuk. Például m számú tanítóminta esetén tekint-
hetjük hibaként a modellezô architektúra egyes beme-
neti mintákra (x i) adott válaszainak (y i (p)) a megkívánt
értékektôl (di) vett távolságai négyzetösszegének szám-
tani közepét (Mean Squared Error, MSE):
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Ezek után a tanulás célja átfogalmazható azzá a tö-
rekvéssé, hogy ezt a p paramétervektortól függô hiba-
függvényt minimalizáljuk. Ez pedig nem más, mint egy
numerikus optimalizálási feladat, melynek megoldásá-
ra többek között az elôzôekben tárgyalt módszerek al-
kalmasak.

3. Fuzzy szabályalapú 
gépi tanuló rendszerek kialakítása

A modellezô rendszer tulajdonképpen felfogható egy tu-

dásbázisként és egy hozzá kapcsolódó következtetô

gépként. A tudásbázis valamilyen elôre meghatározott
struktúrában tárolja a tanulás folyamán „megszerzett tu-
dást”, a következtetô gép pedig egy adott megfigyelés
hatására az „aktuális tudásnak” megfelelôen egy követ-
keztetést végez a tároló struktúra szerint. A p paraméter-
vektor a tudásbázis egyes elemeinek az értékét tartal-
mazza. Tehát például ha a modellezô rendszer egy neu-
rális hálózat, akkor a tudásbázis a neuronok struktúrája
szerint tárolja az élsúlyokat (amelyek a p vektor elemei),
a következtetô gép pedig a hálózat válaszát adja.

Fuzzy szabálybázis alapú tanulás esetén a modelle-
zô rendszer következtetô gépe egy fuzzy következtetô
gép, amely szabályalapú következtetést végez, tudásbá-
zisa pedig egy fuzzy szabálybázis, melyben a paramé-
terek a fuzzy szabályok tagsági függvényeit definiálják
(lásd 2.1. alszakasz). Például ha ezek a tagsági függvé-
nyek trapéz alakúak, a p paramétervektor elemei meg-
feleltethetôk a trapézok törés-, vagyis karakterisztikus
pontjainak.

A tudásbázist leíró p paramétervektor optimális érté-
kének megkeresését, azaz a szabálybázis hangolását
numerikus optimalizálással tehetjük meg, többek között
a determinisztikus legmeredekebb lejtô, illetve Leven-
berg-Marquardt eljárásokat, a sztochasztikus genetikus,
bakteriális, illetve részecske-sereg evolúciós algoritmu-
sokat, vagy például az elôzôek kombinációjaként létre-
hozható memetikus technikákat alkalmazva. A keresen-
dô optimum a globális minimum, hiszen a cél a tanuló
rendszer hibájának minimalizálása a p paramétervek-
tor megfelelô megválasztásával.

A gradiens módszerek alkalmazása a tanulási folya-
mat során kézenfekvô.

Az evolúciós algoritmusok segítségével úgy optima-
lizálhatjuk a tudásbázist, vagyis minimalizálhatjuk annak
hibáját, ha az egyedeket különbözô pi paramétervekto-
roknak, a géneket a különbözô vektorok komponenseinek

feleltetjük meg, a fitness-függvényt pedig úgy definiáljuk,
hogy az nôjön a rendszer hibájának csökkenésével.

Mivel az egyedek egy-egy (potenciálisan optimális)
szabálybázist reprezentálnak, szükséges meghatározni
egy megfeleltetést (kódolást) a kromoszómák génjei és
e szabálybázisok között.

Trapéz alakú tagsági függvények esetén egy lehetsé-
ges kódolás a következô [22]. Mivel a szabályok karak-
terisztikus pontjainak adunk értéket az optimalizálás so-
rán, valamennyi egyedben minden egyes gén egy-egy
karakterisztikus pontot ír le. Az egymás utáni gének tra-
pézokat, azok pedig szabályokat határoznak meg kiad-
va a szabálybázist. Tehát az elsô négy gén az elsô sza-
bály elsô dimenzióját magadó trapéz karakterisztikus
pontjait jelenti, a következô négy a következô dimenziót
megadó trapézt írja le, és így tovább. 

A kódolást a 4. ábra mutatja, ahol ai j, bi j, ci j, illetve di j

az i-edik szabály j-edik bemeneti dimenziójának, ai, bi, ci,

valamint di az i-edik szabály kimeneti dimenziójának a ka-
rakterisztikus pontjai.

Az algoritmusok nem tudják figyelembe venni, hogy
az egymást követô gének között milyen viszonynak kell
lennie. Ebbôl kifolyólag ügyelni kell az evolúciós ope-
rátorok következményeként esetlegesen létrejövô úgy-
nevezett abnormális fuzzy halmazokra, vagyis azokra az
esetekre, amikor a trapézok csúcsai rossz sorrendbe ke-
rülnek (például a jobb alsó csúcsnak kisebb az értéke,
mint a bal alsónak). Ez a nem kívánatos jelenség az imént
részletezett génkódolás esetén elkerülhetô azzal, ha azo-
kon a helyeken, ahol esély van a kialakulásukra, egy sor-
rendezés kerül végrehajtásra.

4. A fuzzy szabályalapú, 
tanuló architektúrákat összehasonlító
szimulációs vizsgálatok

Ebben a szakaszban a különbözô fuzzy következtetési
technikákon és optimalizálási algoritmusokon alapuló
tanulási eljárások szimulációs futtatások segítségével
történô összehasonlításának körülményei, valamint az
eredmények tömör összefoglalása kerül ismertetésre. 

4.1. A szimulációs vizsgálatok körülményei

A futtatások során a legmeredekebb lejtô és Leven-
berg-Marquard algoritmusok önállóan (tehát evolúciós
algoritmussal történô párosítás nélkül) nem kerültek al-
kalmazásra, ugyanis pusztán gradiens technikák hasz-
nálata értelmetlen, hiszen azok a rendszert a hibafelü-
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4. ábra
Szabálybázis
kódolása
kromoszómába



leten legfeljebb csak a legközelebbi lokális minimumig
tudnák eljuttatni. 

A szimulációk futtatására három gépi tanulási prob-
lémán került sor: a kémia területérôl származó egydi-
menziós, úgynevezett pH [22], a robotikában felmerülô
kétdimenziós, úgynevezett inverz koordináta transzfor-
mációs (ICT) [22] és egy hatdimenziós függvény appro-
ximációs feladaton, amelyet a Nawa–Furuhashi szerzô-
páros alkalmazott cikkében [20] a Bakteriális Evolúciós
Algoritmus kiértékelésére. Bár ezek egyszerû, alacsony
dimenziós problémák, mégis alkalmasak a vizsgált fuzzy
rendszerek karakterisztikáinak összehasonlítására.

A futtatások során megfigyelésre kerültek többek
között az aktuális populációk legjobb egyedeinek a fit-
ness-értékei az idô függvényében. Ezen értékek a taní-
tómintákon mért MSE-n alapuló alábbi fitness-definíció
által adódtak:

Az 5. ábra a hatdimenziós tanulási probléma esetén
mutatja a legjobb egyedek fitness-értékeinek idôbeli le-
folyását. A szaggatott vonalak a tisztán (gradiens lépé-
sek nélküli) evolúciós eljárásokat (genetikus, bakteriális
és részecske-sereg), a pontozott vonalak a legmerede-
kebb lejtô technikát alkalmazókat, míg a folytonos vona-
lak a Levenberg-Marquardt algoritmust használókat jelzik.

4.2. A szimulációs eredmények összefoglalása

Az elvégzett szimulációs futtatások alapján a követ-
kezô fô tendenciák figyelhetôk meg:

• A bakteriális technikák jobbnak mutatkoztak, mint a
megfelelô genetikus és részecske-sereg módszerek.

• A memetikus algoritmusok (fôként a Levenberg-Mar-
quardt gradiens lépéseket alkalmazók) hatékonyabb-
nak bizonyultak, mint a gradiens lépések nélküli,
tisztán evolúciós technikák.

• Általában egy adott futási idô után a bakteriális evo-
lúciós algoritmus alapú memetikus módszer (BMA)
nem volt rosszabb, mint bármely más technika, és
minél bonyolultabbnak mutatkozott egy feladat, an-
nál inkább kiadódott e módszer elsôbbsége (5. ábra).

5. Összefoglalás

A fentiekben a fuzzy rendszerek alapkoncepciójából ki-
indulva a fuzzy következtetésekbe, valamint a numerikus
optimalizálás evolúciós módszereibe történô betekintést
és az ellenôrzött gépi tanulás sémájának ismertetését
követôen a fuzzy szabályalapú tanuló rendszerek evolú-
ciós technikák révén történô kialakításának lehetôsége
került tárgyalásra, melynek részét képezte egy, a kiala-
kított rendszereket összehasonlító szimulációs vizsgálat.

Mint ahogyan azt a szimulációk során alkalmazott
kémiából átvett pH és robotikából származó ICT problé-
mákra adott eredmények is alátámasztják [10], a létreho-
zott fuzzy rendszerek számos tudományterület (természet-
tudományok, mûszaki tudományok, orvostudomány, gaz-
daságtudomány stb.) mûvelôi számára hasznos model-
lezési segédeszközként szolgálhatnak.
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5. ábra
A legjobb egyedek f i tness-értékeinek idôbeli alakulása 

a hatdimenziós probléma esetén
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