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Jelen cikk célja rovid dsszefoglalast adni a fuzzy szahdlyalapi gépi tanulé architektiurak koncepcidjarol, illetve e rendszerek
evolicids szamitasi technikak segitségével torténé létrehozasanak lehetéségérdl. Ennek soran a fuzzy kovetkeztetés
koncepcidjanak ismertetése, az evoliicids algoritmusokba nyiijtott betekintés, valamint az ellendrzott gépi tanuldas sémajanak
felvazolasat kivetden a fuzzy szahalyalapi tanulé architekturak kialakitasanak mikéntje keriil targyalasra.

Ezek utan a cikk szimulacios futtatasok eredményei alapjan, az ily médon létrehozott fuzzy rendszerek tomor dsszehasonlitasat

mutatja he.
1. Bevezetés

Az ugynevezett ,lagy szamitési” médszerek az 1960-as
években jottek Iétre. Hatékonysagban feltlmuljak a ko-
rabbi eljarasokat nagybonyolultsagu, de ugyanakkor
szuboptimalis megoldasokat elfogadd problématerile-
teken. Ennek oka az, hogy ezek a technikak viszonylag
alacsony id6- és tarkomplexitassal oldjak meg a prob-
Iémaékat, illetve alkalmazhaték olyan esetekben is, ami-
kor a probléma analitikus leirdsa nem, vagy csak rész-
ben ismert, illetve amikor a terlletr6l szerezhet6 tudas
bizonytalan. Ezeknek az elényds tulajdonsagoknak az
arat a megoldas pontatlansagéaban, szuboptimalitasaban
kell megfizetni. Alkalmazhat6saguk igy olyan problémak-
ra korlatozodik, melyekben a hatékonysag, a gyorsasag
fontos szempont, ellenben elfogadhaté némi pontossag-
beli hianyossag.

Alagy szamitasi modszerek harom f6 agat a fuzzy
rendszerek, az evoluciés szamitdsi technikak, illetve a
neuralis haldzatok jelentik. Bar a fenti tulajdonsagokkal
mind rendelkeznek, lényeges kiildnbség van kdzottik.

Afuzzy rendszerek, valamint a neuralis halézatok j6
modellezéképesséegliek. Alkalmasak olyan rendszerek
modellezésére, melyek szerkezetére nézve kezdetben
semmilyen (feketedoboz probléma), vagy hianyos isme-
retek alinak rendelkezésre (szlrkedoboz probléma), vi-
szont ismertek, vagy megismerhet6k egyes bemenetek-
re adott valaszok. Ezekbdl a bemenet-kimenet parokbol
tanuldsi folyamat réveén fel tudnak épiteni egy modellt,
melynek segitségével ,utanozni tudjak” a megtanult rend-
szereket. Nagy klldnbség a két lagy szamitasi megko-
zelités k6zott az, hogy amig a neuralis halézatok a prob-
[émarél nyert tudast az elemei kdzti 6sszekdttetések-
ben Iévd sulyokban hordozzak nehezen kinyerhetd és
még nehezebben, vagy egyaltalan nem interpretalhaté
forméban, addig a fuzzy rendszerek eleve olyan szabaly-
bazis épitésével halmozzak fel a tudast, ahol minden in-
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formacio explicit médon, interpretalhaté formaban van
jelen. Ez nagy elény a fuzzy rendszerek oldalan.

Az evollcios szamitasi technikak voltaképpen szto-
chasztikus numerikus optimalizalasi eljarasok, melyek
a természetben megfigyelhet6 killénbéz6 evolucids fo-
lyamatok mechanizmusat probaljak egyszer(isitve visz-
szaadni, ezzel térekedve az egyre optimalisabb megol-
dasok felé hasonléan, mint ahogyan az az élévilagban
is megfigyelhet6 versengésben zajlik.

Kedvez§ tulajdonsagaiknak készénhetéen a lagy sza-
mitasi médszereken alapulé intelligens miiszaki alkalma-
zasok kére folyamatos bdvulést mutat a nagybonyolult-
sagu, szuboptimalis megoldasokat elfogad6 probléma-
terlileteken a robotikatdl [1] a kiilénb&z6 szabalyozas-
technikai [2] terlleteken keresztll a hiradastechnikan
[3] &t a kémiaig [4], vagy éppen a kézgazdasagtanig [5].
Ennek kdvetkezményeként az e modszerek kézé tarto-
z6 fuzzy szabalybazis alapu tanul6 és kdvetkeztetd rend-
szerek, mint intelligens rendszerkomponensek felhasz-
naldsa is né az emlitett, és megannyi més terlleteken.

Afelsoroltak kézll a hiradastechnikat kiemelve el-
mondhatd, hogy alkalmaznak fuzzy rendszereket a tav-
kozlésben utvonalvalasztashoz [6,7], torlédasiranyitas-
hoz [8], hibaazonositashoz [9] és még szdmos mas
részterlleten.

Tanulé és kdvetkeztetd rendszerekrdl [évén szé, mi-
nésiteni, értékelni ket a kdvetkezd alapvetd tulajdonsa-
gaik segitségével lehet: a tanulas és a tanulast kdvetéen
a megtanult szabalyok alapjan toérténé kdvetkeztetés idé-,
tarkomplexitasa, valamint a tanulds pontossaga, illetve
hibaja.

Jelen cikk célja egy révid dsszefoglalast adni az ilyen
evolucidés szamitasi technikak segitségével torténd lét-
rehozasanak lehet6ségérdl. (Felépitésik bévebb ismer-
tetése és mélyrehatédbb analizise megtalalhaté példaul
a [10] valamint [11] publikaciékban.)
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Ezt a célkitlizést szem el6tt tartva a kdvetkez§ sza-
kasz ismerteti a fuzzy modellezés és kdvetkeztetés kon-
cepciojat, betekintést ad a numerikus optimalizalas el-
méletébe, ezen beliil is az evoluciés algoritmusokba,
valamint felvazolja az ellen6rz6tt gépi tanulas sémajat.
Ezutan, a harmadik szakaszban a fuzzy szabalyalapu ta-
nulé architektirak kialakitasanak lehet6sége kerul tar-
gyalasra. A negyedik szakasz szimulaciés futtatasok
eredményein alapulé tdmoér ésszehasonlitasat mutatja
be az ily médon létrehozott fuzzy rendszereknek. A cik-
ket egy 6sszefoglalas zarja, amely ravilagit az ismerte-
tett megkdzelitések f6 tulajdonsagaira és a kiilénb6z6
tertleteken val6 alkalmazhatésagara.

2. Az alkalmazott modellezd eszk6zok
és technikak attekintése

A fuzzy szabalyalapu tanuld és kdvetkeztet6 rendsze-
rek létrehozésa elméleti oldalrdl tébb teriuleten is bizo-
nyos jartassagot igényel. Magatél értetédéen az egyik
ilyen terilet a fuzzy szabalyalapt modellez8 és kévet-
keztetd rendszerek elmélete [12,13], a masik pedig a
gépi tanulas [14,15]. Az el6bbihez szikséges a fuzzy
rendszerek alapkoncepci6janak [12,16], tovabba a fuzzy
kovetkeztet6 mddszereknek, amig az utébbihoz a nu-
merikus optimalizalas egyes eljardsainak az ismerete
[17-22].

A kovetkezd pontok ezeknek az elméleteknek a ro-
vid, Iényegre t6r6 bemutatasat tizik ki célul.

2.1. A fuzzy rendszerek alapkoncepcidja

Gyakran felmeril az igény arra vonatkozéan, hogy ma-
tematikailag modellezni lehessen olyan helyzeteket, ame-
lyekben adott tulajdonsagok nem hatarozhatok meg tel-
jes pontossaggal, vagy nem ddnthetdk el teljes bizonyos-
saggal, azaz egyfajta ,bizonytalansagi modellezésre”
van szlkség. Aklasszikus halmazelmélet és az erre épu-
I8 klasszikus logika azonban nem, vagy csak nagyon
kérilményes modon alkalmas erre a feladatra. Ennek
kovetkeztében a halmazelmélet olyan iranyu altalano-
sitasa, mely egyszerlen, de hatékonyan alkalmazhat6
eszkdzt ad az ilyen bizonytalansagi modellezéssel kap-
csolatos kihivasokra, el6zéleg megoldatlan, vagy prak-
tikusan megoldhatatlan problémakra szolgéaltatott ered-
meényt.

A fuzzy halmazok elmélete L. A. Zadehtdl szarmazik
[16], aki az 1960-as években alkalmazta éket el6sz6r bi-
zonytalansagi modellezésre. Az elgondolas a klasszi-
kus (crisp) halmazelmélettel szemben nem csak azt en-
gedi meg, hogy egy elem része legyen egy halmaznak
vagy sem, hanem azt is, hogy bizonyos mértékben legyen
csak része. Tehat amig a crisp halmazelméletben egy
halmaz definialhaté ugy, hogy felsoroljuk az elemeit, vagy
ezzel ekvivalens médon egy adott alaphalmaz minden
elemér6l megmondjuk, hogy az adott halmazhoz tarto-
z6-e, addig fuzzy halmazok esetén nem csupéan az ele-
mek halmazhoz valé tartozadsanak tényét, hanem annak
mértékeét is megadhatjuk. Vagyis a crisp halmazelmélet-
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tel szemben, ahol egy X alaphalmazbeli A halmazt meg-
hataroz egy y,:X—{0,1} karakterisztikus fliggvény:
1, hax€eA
WE B Kal%) = {0, hax ¢ A
a fuzzy halmazelméletben az A halmazt az § p,:X—[0,1]
tagsagi fliggvénye hatarozza meg.
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1. abra
Trapéz alaku tagsagi fliggvénnyel definialt fuzzy halmaz

Az 1. abranszerepl6 és a hozza hasonlé ugynevezett
trapéz alakutagsagi figgvények alkalmazésa széles kor-
ben elterjedt. A jelen cikkben targyalt rendszerek is ilyen
trapéz alaku tagsagi fliggvényekkel definialhaté fuzzy
halmazokat alkalmaznak, illetve annak elfajult specia-
lis eseteit: hdromszdég és szingleton (ez utdbbi esetén a
halmaz egyelem(). A szakaszonként linearis tagsagi fligg-
vényeknek a téréspontjai a karakterisztikus pontok, me-
lyek segitségével a fliggvény altal leirt fuzzy halmazok
kénnyedén megadhatdk. Az abran ezek az a, b, ¢, vala-
mint d jel6lés( pontok.

A fuzzy halmazok szolgélnak a fuzzy halmazelmélet
alapjaul. Segitségiikkel tdbbek kdzott megkaphatjuk a
(szlikebb értelemben vett) fuzzy logikat. (Tagabb értelem-
ben véve minden fuzzy matematikat magaba foglalé méd-
szercsaladot szokés fuzzy logikdnak nevezni [23].)

Eszerint a fuzzy logikaban kézenfekvé médon leirha-
t6 példaul egy olyan allités, hogy valamely formula ,félig-
meddig” igaz, vagy egy tulajdonsag ,t6bbé-kevésbé” il-
lik egy elemre, hiszen mind az igazsag fogalma, mind
pedig egy adott tulajdonsaggal val6 rendelkezés relaci-
0ja visszavezetheté halmazokba vald tartozasokra.

2.2. Fuzzy szahalybazis alapu kivetkeztetd rendszerek

A fuzzy szabalybazis alapu kdévetkeztetd rendszerek
egy adott k dimenzids X bemeneti problématér (alaphal-
maz) egy fuzzy részhalmazahoz (a rendszer bemenete)
— ami természetesen specidlis esetben lehet az alap-
halmaz egyetlen eleme is — rendelik hozza az Y kime-
neti téregy fuzzy részhalmazat, illetve a defuzzifikacié
(lasd lejjebb) utan a kimeneti tér egy elemét. Tehat felfog-
haték egy P(X)— P(Y) figgvényként (ahol P(X) és P(Y)
rendre X, illetve Y fuzzy hatvanyhalmazai).

Mivel minden tébbkimenetl fuggvény trivialis médon
felirhatd egykimenetd fliggvények 6sszességeként, ezért
a tovabbiakban csak egy kimeneti dimenzids rendsze-
rekrél esik sz6.
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2. abra
A szabadlyalapu fuzzy kévetkeztet6 rendszerek felépitése

Afuzzy szabdlyalapl kévetkeztetd rendszerek altala-
nos felépitését az 2. abra [12] mutatja.

Az illeszkedési mérték meghatarozasa a rendszer be-
menetének (megfigyelés) az 6sszehasonlitdsat jelenti a
Szabalybazisban szerepl8 szabalyok (R, i=1...n) felté-
tel (antecedens) részével. A kbvetkeztet6 gép az egyes
szabalyok kévetkezmény (konzekvens) részébdl egy ere-
dé kévetkezményt (kbvetkeztetés, konklizid) hoz létre
annak megfeleléen, hogy az egyes szabalyok feltétel
része milyen mertékben illeszkedett a bemenetre. A de-
fuzzifikacios modul szerepe az, hogy az eredd kévetkez-
meényként kapott fuzzy halmazbdl a kimeneti tér egy ele-
mét, vagyis egy crisp (nem fuzzy) értéket allitson elé.

A szabalyalapu fuzzy kévetkeztet6 rendszerek nagy
elénye a klasszikus kdvetkeztet6 rendszerekkel szem-
ben tébbek k6zdtt az alacsonyabb szamitasi komplexi-
tas (sok bemenetl modellek esetén is), a kdvetkeztetési
szabalyok kénnyd interpretaldsa, valamint a modellezen-
dé rendszer analitikus leirasanak szikségtelensége. Az
els6 kedvezd tulajdonsag abbol ered, hogy a szabalyok-
ban szerepl6 tagsagi fliggvények rendszerint egyszer(-
en kezelhet§ tulajdonsagokkal birnak, valamint a szaba-
lyok kiértékeléséhez konnyen elvégezhet6 miveletek
szlikségesek.

E rendszerek masik elénye, a kénny( interpretalhato-
sag abbol ered, hogy a kévetkeztetési szabalyokban ugy-
nevezett ,nyelvi valtozdk” szerepelnek, vagyis a szaba-
lyokban az egyes bemend paraméterek értékei természe-
tes nyelven megfogalmazott ,értékekkel” hasonlitédnak
0ssze (melyek valdjaban fuzzy halmazok tagsagi fliggvé-
nyei). A szabalyok ugynevezett Mamdani-féle, ortogona-
lisan dekomponalt alakja lehetéséget ad a szabalyok
feltétel részeinek és a megfigyelésnek a dimenzionkén-
ti 6sszevetésére, kialakitva az egyes szabalyokhoz tar-
toz6 kdvetkeztetéseket [24]:

R;:ha X; ; megegyezik A; ; — gyel és ...
és X; x megegyezik A; , — val
akkor Y; megegyezik B; — vel

Ez a tulajdonsag mas tanulé architekturakkal (pél-
daul a neuralis halézatokkal) 6sszehasonlitva vitathatat-
lanul elényés.

A harmadik tulajdonsag oka az, hogy a fuzzy szabaly-
bazis kinyeréséhez egyaltalan nem szlkséges ismer-
nink a modellezendd strukturat, ugyanis vagy egy szak-
értd (aki a modellezendd folyamatrél, rendszerrél szaba-
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lyokként megfogalmazhat6 tapasztalatokkal rendelkezik)
bevonasaval, vagy pedig ugynevezett ,tanitémintak” (be-
menet-kimenet parok) segitségével hozzuk létre a sza-
balybazist. Az utébbi esetben (ellenérzétt) gépi tanulas-
rél beszeéllink (14sd 2.4. szakasz). Természetesen a két le-
het8ség egyike sem nyujthat pontos modellt, mivel sem
a szakértd tudasa, sem a tanitémintdk nem fedhetnek le
minden lehet8séget, tovabba mind a szakértdi tapaszta-
latok, mind pedig a tanitémintak zajosak, pontatlanok.

Ennek ellenére térekedhetlnk rendszerink minél na-
gyobb pontossagara, hibajanak minimalizalasara, a Iét-
rehozott szabalybazisban szereplé paraméterek finom
valtoztatasaval. Ezt a folyamatot hangoldsnak nevezzik,
amit végezhetink manudlisan, illetve automatizéltan op-
timalizalé technikak segitségével.

2.3. Numerikus optimalizélas

A numerikus optimalizalas feladata egy (kényszerfel-
tételek altal meghatarozott) halmaz azon p,,; optimalis
pontjanak a megkeresése, amely pontban egy adott fop,
célfiiggvény a globalis optimumat (feladattél fliggéen ez
lehet maximum vagy minimum) felveszi. Tehat a cél egy
globalis szélséérték-keresési feladat elvégzése.

Erre a feladatra Iéteznek determinisztikus, illetve szto-
chasztikus, valamint analitikus és iterativ eljarasok is.
Minél bonyolultabb, valtozatosabb a minimalizalandé fugg-
vény, anndl inkdbb az iterativ eljarasok nyernek teret az
analitikusakkal szemben és minél tébb lokalis minimum-
mal rendelkeznek, anndal inkabb a sztochasztikusak ér-
vényesllnek a determinisztikusak ellenében.

Az iterativ algoritmusok kdzil hatékony determinisz-
tikus eljarasok az ugynevezett gradiens-mddszerek, mint
példaul a legmeredekebb lejt6, momentum médszer, kon-
jugalt gradiens eljaras, Newton-modszer, vagy a Leven-
berg-Marquardt algoritmus. Sikeres sztochasztikus elja-
rasok az ugynevezett evoliuciés szamitasok, mint pél-
daul az evollcios stratégiak, evollciés programozas,
genetikus-, pszeudo-bakterialis-, vagy bakterialis algo-
ritmusok, illetve a részecske-sereg médszer.

2.83.1. Gradiens-médszerek

A gradiens-modszerek Iényege az, hogy az adott £,
célfuggvényen elfoglalt aktudlis p poziciéban kiszamol-
juk a fuggvény gradiensét, majd a kapott értéket felhasz-
nalva ,0débbléplnk” a fliggvényen, vagyis modositjuk
p értekét azzal a céllal, hogy minel optimalisabb (fela-
dattol fliggéen minél nagyobb, illetve minél kisebb) fligg-
vényértéket kapjunk.

Alépegetések eredményeként kellen sok iteraciot
kévetéen a gradiens-moédszerek a kiindulasi pozicidhoz
es6 ,legkdzelebbi” lokalis optimumot meglehetésen pon-
tosan megtaldljak, azonban a globalis optimum elérésé-
hez, annak valamilyen kérnyezetébdl kell indulniuk.

2.3.2. Evoluciés szamitasi modszerek
Bizonyos optimalizélasi technikak a természetben
megfigyelhet6 evolucios folyamatok absztrakt leutan-
zasai, ezért 6sszefoglaléan evoliuciés szamitasoknak ne-
vezzik 6ket. Céljuk a ,populdcié”olyan formalasa, ami
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soran egyre ,jobb” ,egyedek”jonnek létre. Ha az ,egye-
deket” (vagy ,kromoszémakat’) egy probléma egy adott
megoldasanak, a ,populaciét” a megoldasok egy rész-
halmazanak, a ,jésagot” (,fitness”) pedig az adott meg-
oldas optimalitasanak feleltetjiik meg, akkor az evolu-
cios szamitasok célja nem mas, mint egy problémara
az optimalis megoldas(ok) megtalalasa.

Ennek érdekében el6szér létrehozandd egy kezdeti
populacié, ami térténhet az egyedek véletlenszer( ge-
neraldsaval, vagy esetleg egy korabbi populacio felhasz-
nalasaval. Ezt kdvet6en minden iteracids ciklusban (,ge-
nerdciéban”) a technikak az ugynevezett evolicidés ope-
ratorokat, vagy evoluciés miveleteketalkalmazzak a
populacio egyes egyedein, vagy az egészén. Ezek soran
az egyedek egyes ,génjei” (a kromoszémaknak, vagyis
a megoldasoknak az elemi részei) megvaltoztatjak ér-
tékiiket. Uj egyedek, tgynevezett ,utédok” (,leszdrma-
zottak”) is kialakulhatnak a populaciéban lévé kromo-
szémak felhasznaldsaval. Azokat az egyedeket, melyek
segitségével Ujak jénnek létre, ,szlil6knek” nevezzik.
Az operatorok szerepe az is, hogy meghatarozzak az
egyedeknek azt a részét, amelyik atjut a kévetkez6 ge-
neracidba. Elitista stratégia alkalmazasa soran minden
atjut a kdvetkez6 generacidba. Ezzel garantalt, hogy a
mindenkori legjobb egyed nem veszik el, azaz valéban
az optimalizalas folyaman addédott legjobb megoldast
kapjuk meg optimalisként.

Ha az evoldcios algoritmusokban az egyedek kildén-
b6z6 optimalizalandé p; paramétervektorokat, a gének
a kulénb6z8 vektorok komponenseit reprezentaljak, a
fittness-érték pedig né a célfliggvényen valé jobb érték
felvételekor, akkor e technikdk segitségével numerikus
optimalizalast végezhetiink. A tovabbiakban tekintsik a
kromoszomakat paramétervektoroknak.

2.3.3. Memetikus algoritmusok

Az evollciés szamitasi technikak jellegikbdl ado-
doéan feltérképezik az egész célfliggvényt, igy kell6en
sok iteraciét kévetben eljutnak minden lokalis optimum
kdzelébe. Azonban az egyes lokdlis optimumokhoz meg-
lehet6sen lassan konvergalhatnak.

A kétféle emlitett moédszertipusok (gradiens és evo-
lucidés) kombinaciojaval is dolgozhatunk, ha példaul egy
kivalasztott egyedre végrehajtunk egy gradiens eljarast,
vagy ha ugyanezt megtesszik egy bakteridlis algoritmus
ket memetikus algoritmusoknak [21], az ut6bbiakat pe-
dig bakterialis memetikus [22] algoritmusoknak nevez-
zuk.

Ezeknek az az el6nye adédik, hogy minden egyed
bekeril a hozza legkdzelebbi lokalis optimumba. Ezzel
6tvdzni tudjuk a két megkdzelités eldnyeit, vagyis meg-
talaljuk a lokalis optimumokat elég pontosan (kell6en
sok gradiens iteracié utan) az egész célfiggvenyen (kel-
I6en sok genetikus iteracié utan). Tehat meglehetésen
nagy pontossaggal kiadédik a globalis optimum, azaz
az optimalis p,,; parametervektor.
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2.4. Gépi tanulas

A gépi tanulds [14,15] elmélete arra térekszik, hogy
modszereket adjon ismeretek, készségek automatizalt
elsajatitasara. Eredményei szamos terlleten alkalmaz-
haték. llyen példaul a miszaki, vagy orvosi diagnoszti-
kai felismerési feladatok (képfelismerés, beszédfelisme-
rés), folyamatszabdlyozas, vagy akar az el6rejelzés. Va-
I6jaban ezek a terliletek mind egy olyan k6z@s, altalanos
problémanak a specialis esetei, melynek megoldasa a
gépi tanulas alapveté célja. A gépi tanulasrél ugyanis
altalanossagban elmondhato, hogy egy ,modellezé renad-
szer”paramétereinek hangolasat jelenti annak érdeké-
ben, hogy viselkedése minél jobban hasonlitson a ,mo-
dellezett rendszer”viselkedéséhez.

Ezt a viselkedést bemenet-kimenet parokkal jellemez-
hetjuk. Attél figgben, hogy milyen ismereteink vannak
a modellezett rendszerrél, kilénbdz6 tanulasi formak 1é-
teznek. Ha a rendszer struktirajara nézve nincs elisme-
retiink, feketedoboz-rendszermodellezésrél beszélink.
Ebben az esetben a tanulas Ugynevezett tanitémintak se-
gitségével térténik. A tanitomintak lehetnek akar beme-
net-kimenet parok (felligyelt tanitas), vagy csak bemene-
tek (nem ellenérz6tt tanitas). Lehetséges, hogy a tanité-
minta-halmazban bemenettel rendelkez6 és nem rendel-
kez8 minték is vannak (félig ellenérzétt tanitas). El6fordul-
hat, hogy csak ritkan és akkor is csak pontatlan vissza-
jelzést kapunk a bemenetekre (megerdsitéses tanitas).
Az esetek mind kilénb6z8 megkdzelitéseket kivannak.

Jelen cikk ellen6rzétt tanitdsd rendszerekkel foglal-
kozik. E rendszerek felépitését a 3. abra mutatja.

X d

Modellezett rendszer

A

\
Modellez6 rendszer
(P)
AY

3. abra Az ellenérzétt tanitdsu rendszerek felépitése

A modellez6 rendszer felparaméterezesétdl (p) fliggé
hiba (e(p)) arr6l ad szamot, hogy mennyire jarunk kozel
a célunkhoz, azaz mennyire hasonlit a modellezé a mo-
dellezett rendszerre. Ertékét kiilonboz6 médokon defi-
nialhatjuk. Példaul m szamu tanitéminta esetén tekint-
hetjik hibaként a modellez8 architektira egyes beme-
neti mintékra (x;) adott valaszainak (y;(p)) a megkivant
ertékektdl (d;) vett tavolsagai négyzetdsszegének szam-
tani kézepét (Mean Squared Error, MSE):

1 m
£(p):=— ) (&~ yi(P))
i=1

m
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Ezek utan a tanulas célja atfogalmazhat6 azza a t6-
rekvéssé, hogy ezt a p paramétervektortdl fligg6 hiba-
fuggvenyt minimalizaljuk. Ez pedig nem mas, mint egy
numerikus optimalizalasi feladat, melynek megoldasa-
ra tébbek k6zott az el6z6ekben targyalt médszerek al-
kalmasak.

3. Fuzzy szabalyalapu
gépi tanulé rendszerek kialakitasa

A modellez8 rendszer tulajdonképpen felfoghat6 egy tu-
dasbédzisként és egy hozza kapcsolddo kdvetkezteté
gépként. Atudasbéazis valamilyen el6re meghatarozott
strukturaban tarolja a tanulas folyaman ,megszerzett tu-
dast”, a kdvetkeztet6 gép pedig egy adott megfigyelés
hatasara az ,aktualis tudasnak” megfeleléen egy kovet-
keztetést végez a tarolo struktura szerint. A p paraméter-
vektor a tudasbazis egyes elemeinek az értékét tartal-
mazza. Tehat példaul ha a modellez8 rendszer egy neu-
ralis halézat, akkor a tudasbazis a neuronok strukturaja
szerint tarolja az élsulyokat (amelyek a p vektor elemei),
a kovetkeztetd gép pedig a halézat valaszat adja.

Fuzzy szabalybazis alapl tanulds esetén a modelle-
z8 rendszer kdvetkeztet gépe egy fuzzy kovetkeztetd
gép, amely szabalyalapu kdvetkeztetést végez, tudasba-
zisa pedig egy fuzzy szabalybazis, melyben a parameé-
terek a fuzzy szabdlyok tagségi figgvényeit definialjak
(lasd 2.1. alszakasz). Példaul ha ezek a tagsagi fliggveé-
nyek trapéz alakuak, a p paramétervektor elemei meg-
feleltethet6k a trapézok térés-, vagyis karakterisztikus
pontjainak.

A tudasbazist leir6 p paramétervektor optimalis érté-
kének megkeresését, azaz a szabalybazis hangolasat
numerikus optimalizalassal tehetjik meg, tdbbek kdzott
a determinisztikus legmeredekebb lejtd, illetve Leven-
berg-Marquardt eljarasokat, a sztochasztikus genetikus,
bakterialis, illetve részecske-sereg evollcids algoritmu-
sokat, vagy példaul az el6z6ek kombinaciéjaként létre-
hozhat6 memetikus technikdkat alkalmazva. A keresen-
dé optimum a globalis minimum, hiszen a cél a tanulé
rendszer hibgjanak minimalizalasa a p paramétervek-
tor megfelel6 megvalasztasaval.

A gradiens modszerek alkalmazasa a tanulasi folya-
mat soran kézenfekvé.

Az evollcids algoritmusok segitségével ugy optima-
lizalhatjuk a tudasbazist, vagyis minimalizalhatjuk annak
hibajat, ha az egyedeket kilonb6z6 p; paramétervekto-
roknak, a géneket a kiilénbdz8 vektorok komponenseinek
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feleltetjik meg, a fitness-fliggvényt pedig ugy definialjuk,
hogy az néjon a rendszer hibajanak csékkenésével.

Mivel az egyedek egy-egy (potenciélisan optimalis)
szabdlybazist reprezentalnak, szilkséges meghatarozni
egy megfeleltetést (kddolast) a kromoszémak génjei és
e szabalybazisok kdz6tt.

Trapéz alaku tagsagi figgvények esetén egy lehetsé-
ges kdédolas a kdvetkez6 [22]. Mivel a szabalyok karak-
terisztikus pontjainak adunk értéket az optimalizalas so-
ran, valamennyi egyedben minden egyes gén egy-egy
karakterisztikus pontot ir le. Az egymas utani gének tra-
pézokat, azok pedig szabalyokat hataroznak meg kiad-
va a szabalybdazist. Tehat az elsé négy gén az elsé sza-
baly elsé dimenziéjat magadd trapéz karakterisztikus
pontjait jelenti, a kévetkez8 négy a kévetkezd dimenzibt
megado trapézt irja le, és igy tovabb.

Akodolast a 4. abra mutatja, ahol a;; b;; ¢ illetve dj;
az j-edik szabaly j-edik bemeneti dimenziéjanak, a;, b;, ¢,
valamint d; az i-edik szabaly kimeneti dimenzidjanak a ka-
rakterisztikus pontjai.

Az algoritmusok nem tudjak figyelembe venni, hogy
az egymast kdvetd gének kozott milyen viszonynak kell
lennie. EbbdI kifolydlag lgyelni kell az evollcids ope-
ratorok kdvetkezményeként esetlegesen létrejévd ugy-
nevezett abnormalis fuzzy halmazokra, vagyis azokra az
esetekre, amikor a trapézok csucsai rossz sorrendbe ke-
rilnek (példaul a jobb alsé cstcsnak kisebb az értéke,
mint a bal alsénak). Ez a nem kivanatos jelenség az imént
részletezett génkddolas esetén elkerllhetd azzal, ha azo-
kon a helyeken, ahol esély van a kialakulasukra, egy sor-
rendezés kerll végrehajtasra.

4. A fuzzy szabalyalapu,
tanuloé architekturakat osszehasonlito
szimulacios vizsgalatok

Ebben a szakaszban a kilénbéz6 fuzzy kdvetkeztetési
technikédkon és optimalizalési algoritmusokon alapulé
tanulasi eljarasok szimulécids futtatdsok segitségével
térténd 6sszehasonlitdsanak kérlilményei, valamint az
eredmények tdmor 6sszefoglalasa keril ismertetésre.

4.1. A szimulacids vizsgalatok kdriilményei

A futtatédsok soran a legmeredekebb lejté és Leven-
berg-Marquard algoritmusok &énalléan (tehat evollcids
algoritmussal toérténé parositas nélkil) nem kerdltek al-
kalmazasra, ugyanis pusztan gradiens technikak hasz-
nalata értelmetlen, hiszen azok a rendszert a hibafeli-
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leten legfeljebb csak a legkdzelebbi lokalis minimumig
tudnak eljuttatni.

A szimulacidk futtatasara harom gépi tanulasi prob-
[éman kerult sor: a kémia terlletérdl szarmazé egydi-
menzids, ugynevezett pH [22], a robotikaban felmeril§
kétdimenzids, ugynevezett inverz koordinata transzfor-
macioés (ICT) [22] és egy hatdimenziés fliggvény appro-
ximacids feladaton, amelyet a Nawa—Furuhashi szerzé-
paros alkalmazott cikkében [20] a Bakteridlis Evollucids
Algoritmus kiértékelésére. Bar ezek egyszer(, alacsony
dimenzids problémak, mégis alkalmasak a vizsgalt fuzzy
rendszerek karakterisztikainak 6sszehasonlitasara.

A futtatasok soran megfigyelésre keriltek t6bbek
k6zott az aktualis populaciok legjobb egyedeinek a fit-
ness-értékei az idg figgvényében. Ezen értékek a tani-
témintakon mért MSE-n alapulé alabbi fitness-definicio
altal adodtak: 10

F®) = e +1

Az 5. abra a hatdimenziés tanulasi probléma esetén
mutatja a legjobb egyedek fitness-értékeinek idébeli le-
folyasat. A szaggatott vonalak a tisztan (gradiens 1épé-
sek nélkili) evolucids eljarasokat (genetikus, bakterialis
és részecske-sereg), a pontozott vonalak a legmerede-
kebb lejtd technikat alkalmazokat, mig a folytonos vona-
lak a Levenberg-Marquardt algoritmust hasznal6kat jelzik.

4.2. A szimulacidos eredmények dsszefoglaldsa

Az elvégzett szimulacios futtatasok alapjan a kévet-

kez6 f6é tendenciak figyelhet6k meg:

* A bakterialis technikak jobbnak mutatkoztak, mint a
megfeleld genetikus és részecske-sereg modszerek.

* A memetikus algoritmusok (fé6ként a Levenberg-Mar-
quardt gradiens Iépéseket alkalmazdk) hatékonyabb-
nak bizonyultak, mint a gradiens |épések nélkili,
tisztan evoluciés technikak.

- Altalaban egy adott futasi id6 utan a bakteriélis evo-
lucids algoritmus alapd memetikus médszer (BMA)
nem volt rosszabb, mint barmely méas technika, és
minél bonyolultabbnak mutatkozott egy feladat, an-
ndl inkabb kiadodott e modszer elsébbsége (5. dbra).

5. Osszefoglalas

Afentiekben a fuzzy rendszerek alapkoncepci6jabol ki-
indulva a fuzzy kdvetkeztetésekbe, valamint a numerikus
optimalizalas evollciés modszereibe térténd betekintést
és az ellendrzott gépi tanulds séméjanak ismertetését
kdvetben a fuzzy szabalyalapu tanulé rendszerek evolu-
ciés technikdk révén térténd kialakitdsanak lehetdsége
kerllt targyalasra, melynek részét képezte egy, a kiala-
kitott rendszereket 6sszehasonlitdé szimulaciés vizsgalat.

Mint ahogyan azt a szimulaciék soran alkalmazott
kémiabol atvett pH és robotikabdl szarmazo ICT problé-
makra adott eredmények is alatdmasztjak [10], a létreho-
zott fuzzy rendszerek szamos tudomanytertlet (természet-
tudoméanyok, miiszaki tudomanyok, orvostudomany, gaz-
dasagtudomany stb.) mivel8i szamara hasznos model-
lezési segédeszkdzként szolgalhatnak.

LXVI. EVFOLYAM 2011/4

7 . : : : : :
- BMA—® —— i
Br }_ —————r 7'7 g ——
A PSO
5t P i
) f BsD””

1 1 1 1 1 1
0 100 200 300 400 500 600 700
Futasi ido (sec)

GA — Genetikus Algoritmus

GSD — Genetikus Algoritmus legmeredekebb lejté lépésekkel

GMA — Genetikus Algoritmus Levenberg-Marquardt lépésekkel

BEA — Bakteridlis Evohicios Algoritmus

BSD — Bakterialis Evolicios Algoritmus legmeredekebb lejto lépésekkel
BMA - Bakterialis Evolicios Algoritmus Levenberg-Marquardt lépésekkel
PSO — Részecske-sereg modszer

PSD — Részecske-sereg modszer legmeredekebb lejto lépésekkel

PMA — Részecske-sereg modszer Levenberg-Marquardt lépésekkel

5. abra
A legjobb egyedek fitness-értékeinek idébeli alakulasa
a hatdimenziés probléma esetén
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