
1. Bevezetés

A fáziszaj a kommunikációs rendszerek tulajdonságait
jelentôsen befolyásolja. A legtöbb, ezzel foglalkozó szak-
cikk [1-4] a fáziszaj spektrumát néhány mérés alapján
próbálja közelíteni, ezért az érvényességi körük korlá-
tozott. Néhány további cikk szigorú elméleti alapokon
nyugszik és így valódi megértést tesz lehetôvé [5-7]. Rend-
szertervezési célokra az általában alkalmazott közelíté-
sek (például az, hogy a rendszer vezéroszcillátorában
csak fáziszajt tételezünk fel, az amplitúdózajt elhanya-
goljuk) nem elégségesek. Ahhoz, hogy precízen model-
lezzük egy oszcillátor zajának hatását a rendszer para-
métereire, a zaj tulajdonságainak pontos ismeretére van
szükség. 

Ebben a cikkben egyszerû módszert adunk meg szi-
nuszos oszcillátorok zajának pontos meghatározására.
Kísérleti adatok alapján rámutatunk, hogy egy valódi osz-
cillátor jele mindig tartalmaz mind amplitúdó-, mind pe-
dig fáziszajt, melyek jelentôsen auto- és keresztkorre-
láltak. Ideális, zajmentes fáziszárt hurok Matlab szimu-
lációjával a mért oszcillátorjel frekvenciáját pontosan
meg tudjuk határozni. Az amplitúdó és a frekvencia isme-
retében, és a kvadratúra demoduláció ismert elvét fel-
használva, kinyerjük az oszcillátor amplitúdó- és fázis-
zaját az idôtartományban. Az auto- és keresztkorrelációt
és a hozzájuk tartozó teljesítmény-spektrumokat szin-
tén meghatározzuk.

Cikkünkben az az újdonság, hogy a kvadratúra de-
modulációt szokatlan módon alkalmazzuk. Az amplitú-
dó- és fáziszajt modulációnak tekintjük és felhasználjuk
azt, hogy a Matlab-ban zajmentes fáziszárt hurkot tudunk
szimulálni.

Munkánk második szakaszában részletesen leírjuk
az eljárást. A következô szakaszban a pontosságot vizs-
gáljuk, szimulált bemeneti adatok alapján. A negyedik
szakaszban közöljük mérési eredményeinket, megha-
tározzuk az auto- és kereszt-korrelációt és a spektru-
mokat. Az ezt követô I. Függelékben rámutatunk, hogy
nem tudjuk az amplitúdó- és fáziszajt a korreláció vagy

a spektrum tulajdonságai alapján elkülöníteni. A II. Füg-

gelékben bebizonyítjuk, hogy a zajszoknya oka a korre-
láció, nem pedig a fáziszaj, ahogyan ez jelenleg széles
körben elterjedt. A III. Függelékben elôzô eredményein-
ket igazoljuk szimulációval, az ergodikus hipotézis al-
kalmazása nélkül, és ezzel a hipotézis helyességét tá-
masztjuk alá. 

2. A zaj meghatározásának
algoritmusa

Szinuszos jelet vizsgálunk, amplitúdó- és fáziszajjal: 

(1)

ahol ϕ (t) és ξ(t) jelöli a fázis- és a relatív amplitúdó-
zajt. Mindkettô dimenzió nélküli. Feltételezzük, hogy a vár-
ható értékük nulla:

(2)

(3)

és azt, hogy a varianciájuk, σξ
2 és σϕ

2 szintén nem
függ az idôtôl:

(4)

(5)

Feltételezzük, hogy az itt felmerülô minden ƒ(t) kvázi-
periodikus jel ergodikus (itt ez azt jelenti, hogy közép-
értékben ergodikus, [8]):

(6)

Tudjuk, hogy v(t) szigorú matematikai értelemben nem
ergodikus (kivéve, ha az átlagolás idôtartama a harmo-
nikus komponens periódusidejének egész számú több-
szöröse), mert a tetszôleges, hosszú idôre vett idôátlag
különbözhet a várható értéktôl. Azonban mérnöki intuí-
ciónk alapján a továbbiakban feltételezzük, hogy (6) fenn-
áll. Ezt az utat követjük, és a periódusra vett idôátlagot
alkalmazzuk mint várható értéket. 
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Az (1) egyenlet alapján

A mért v(t) alapján pontosan meg tudjuk határozni A
és ωc értékét. Ezután a zajmentes cos(ωct) és sin(ωct)
jelet szimuláljuk. A v(t) jelet ezekkel megszorozva és a
periódusra integrálva, megkapjuk α(t)/2 és β(t)/2 értékét.
Ebbôl

(8)

(9)

Fel szeretnénk hívni a figyelmet, hogy (8) és (9) felí-
rásában csak azt a közelítést alkalmaztuk, hogy a zajok
a periodikus jelhez képest lassú folyamatok. Ezért a vá-
zolt algoritmus várhatóan nagyon pontos. A pontosságot
vizsgáljuk a következô szakaszban.

Az utóbbi néhány mûveletet Matlab/Simulink program-
mal végezzük el. Ebben a szakaszban az algoritmust tesz-
teljük szimulált tesztjelek segítségével. Az elsô szimu-
lált jel csak gaussi fáziszajt tartalmaz, σϕ

2= 2*10-3 (az (1)
egyenlet következtében a variancia dimenzió nélküli).
Az eredmények az 1. és 2. ábrán láthatók.

A következô példában algoritmusunkat olyan szinusz-
jelre alkalmazzuk, amely egyidejû, egymástól független,
gaussi amplitúdó- és fáziszajt tartalmaz. A varianciák
rendre 2*10-3 és 4*10-4. A 3. és 4. ábra mutatja, hogy a
bemenô és kimenô jelek közti egyezés nagyon jó.

4. Mérési eredmények

Ebben a szakaszban azt mutatjuk be, hogyan alkalmaz-
tuk az algoritmust mért adatokra.
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1. ábra A detektált amplitúdózaj σξ2 varianciája, 
amelynek nullának kellene lennie ebben a példában. 

Ez az ábra a numerikus hibát mutatja. 

Vízszintes tengely: az idô másodpercben, függôleges tengely: σξ
2.

Mivel csak fáziszajt alkalmaztunk, σξ
2 << σϕ

2.

2. ábra A detektált fáziszaj σϕ2 varianciája

Vízszintes tengely: az idô másodpercben, függôleges tengely: σϕ
2. 

A görbe jól közelít az elôzôleg megadott 2*10-3 értékhez. 

A relatív pontosság körülbelül 10-4.

3. ábra
A bemenô és a kinyert 
amplitúdó-zaj összehasonlítása 

A σξ
2 variancia nem függ az idôtôl, 

az ábra azt mutatja, hogy a Simulink

hogyan közelítette az idô fügvényében.

(7)

3. Az algoritmus pontosságának
vizsgálata



10 MHz-es kvarcoszcillátort építettünk [9] (5. ábra).
A kimeneti jelet Agilent 54854A típusú oszcilloszkóp-

pal mértük (40 GS/sec opció). A minták száma 524287
volt, a lehetô legnagybb, az idôlépés 25 psec. Az amp-
litúdót a v(t) jel lehetô legtöbb teljes periódusra vett va-
rianciájából határoztuk meg. A vivôfrekvencia megha-
tározásához szimulált, zajmentes fáziszárt hurkot hasz-
náltunk fel, és a VCO frekvenciát mértük. A fáziszárt hu-
rok sávszélessége 100 kHz volt, nem kritikus, a sávszé-

lesség 30-300 kHz-es tartományában a VCO frekvencia
csak 260 Hz-et változott. A kinyert amplitúdó- és fázis-
zaj a 6. ábrán látható. A varianciák rendre 2.5*10-6 é s
1.5*10-6.

Az amplitúdózaj sokkal erôsebben korrelált, mint a
fáziszaj (7. ábra). A távoli autokorreláció-értékek ese-
tén megnövekszik a mérési hiba. A hosszú idejû korre-
láció az 1/f zaj jellemzôje, ezért várható, hogy az ampli-
túdózaj jelentôs 1/f összetevôt tartalmaz. 
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4. ábra  
A bemenô és a kinyert 

fáziszaj összehasonlítása. 

A σϕ
2 variancia nem függ az idôtôl, 

az ábra azt mutatja, hogy a Simulink

hogyan közelítette az idô fügvényében

5. ábra  A próbapanelen megépített oszcil látor



A 8. ábra szerint az amplitúdó- és fáziszaj keresztkorrelációja
jelentôs, ahogy vártuk. Ennek az az oka, hogy az amplitúdó- és a
fáziszaj ugyanabból a zajforrásból származik, az áramköri nemli-
nearitások AM-PM konverziójának segítségével.

Végül közöljük a kinyert zajok auto- és keresztkorrelációjának
gyors Fourier-transzformáltját is, melyeken jól látszik az 1/f zajösz-
szetevô. 

5. Következtetések

Mért adatok alapján sikeresen határoztuk meg az amplitúdó- és fá-
ziszajt, kvadratúra demoduláció segítségével. A meghatározott
amplitúdózaj sokkal erôsebben korrelált, mint a fáziszaj, és a kettô
közti keresztkorreláció is jelentôs. Megmutattuk, hogy korrelálat-
lan zaj esetén nincs zajszoknya. Az eredmények gyakorlati értéke
az, hogy megtudtuk, hogyan kell a zajt modellezni rendszeranalízis
számára: Figyelembe kell venni mind az amplitúdó-, mind a fázis-
zajt, melyeknek jelentôsen auto- és keresztkorreláltaknak kell len-
niük.

Ennek a munkának a folytatásaként tervezzük az algoritmusunk
részletes összehasonlítását más, kísérleti módszerekkel.
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6. ábra
Az épített kvarcoszcil látorral mért
eredmények:
a kinyert amplitúdó és fáziszaj

8. ábra 
Az amplitúdó- és fáziszaj 

keresztkorrelációja, Rξϕ(τ)

7. ábra  
Az amplitúdó- és fáziszaj auto-korrelációja, szûrés nélkül

9. ábra  
A tel jesítményspektrumok
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II. A zajszoknya oka

A spektrumvonal kis spektrális értékeknél történô fo-
kozatos kiszélesedését zajszoknyának nevezzük, má-
sok ezt zajfüggönynek is nevezik. Szeretnénk tudni, mi
a zajszoknya oka. A (21)-es egyenletbôl indulunk ki.

Széles körben elterjedt nézet, hogy a zajszoknya oka
a fáziszaj. Ezzel szöges ellentétben, a (26) egyenletbôl
látjuk, hogy korrelálatlan zaj esetén, még akkor is, ha ez
fáziszaj, nincs zajszoknya. Továbbá, (22) szerint a korre-
lált amplitúdózaj önmagában is zajszoknyát okoz. Ezért
a zajszoknya oka az amplitúdó- és/vagy a fáziszaj Di-
rac-deltától eltérô autokorrelációja, amit (22) segítségé-
vel egyszerûen figyelembe vehetünk.

III. Az eredmények igazolása 
szimulációval

Az elôzôekben feltételt (6) tettünk (ergodikus hipotézis),
és ennek felhasználásával fontos következtetésre jutot-
tunk a II. Függelékben. Logikailag úgy válik teljessé a
vizsgálatunk, ha valahogyan a levont következtetés he-
lyességét, és ezáltal közvetve az ergodikus hipotézis
helyességét próbáljuk meg igazolni. Ez a célja ennek a
Függeléknek.

Azt fogjuk bemutatni a (6) hipotézis felhasználása nél-
kül, hogy i) korrelálatlan fáziszaj nem okoz zajszoknyát,
ii) az amplitúdózaj korrelációja fáziszaj nélkül is zaj-
szoknyát okoz. Ehhez a Matlab/Simulink szimuláció le-
hetôségét használjuk fel. Egyszerûen tudunk korrelálat-
lan zajt szimulálni. i) Bemutatjuk a korrelálatlan fázis-
zajjal terhelt szinuszjel spektrumát. ii) Korrelált amplitú-
dózajjal terhelt szinuszjel spektrumát vizsgáljuk meg,
és megnézzük, hogy a korreláció valóban zajszoknyát
okoz-e fáziszaj nélkül is.

i) Korrelálatlan fáziszajjal terhelt szinuszjelet állítot-
tunk elô a 11. ábra szerinti Simulink rendszerrel.
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10. ábra  
A zajos szinuszjel teljesítmény-spektruma, (26) alapján

11. ábra  
Korrelálatlan fáziszajjal terhelt szinuszjel elôállítása

13. ábra  A zajos szinuszjel spektruma

Vízszintes tengely: frekvencia (Hz),

függôleges tengely: spektrumkomponens amplitúdója dB-ben

12. ábra 
A fáziszaj autokorrelációja a Dirac deltát közelít i 

Vízszintes tengely: idô (sec), függôleges: autokorreláció



A 13. ábrán láthatjuk, hogy bár volt fáziszaj, még-
sincs zajszoknya (nagyon keskeny, csak az analízis vé-
ges, 1 ms-os hossza miatt van), (26)-tal összhangban.

ii) Most megnézzük ugyanezt korrelált amplitúdó-

zajjal. A zajos jelet a 14. ábrán látható módon állítottuk
elô. A korreláció elôidézéséhez bármilyen memóriás
áramkör megfelel, itt egy 10 kHz-es aluláteresztô szûrôt
alkalmaztunk. A 16. ábrán láthatjuk, hogy (22)-vel össz-
hangban megjelent a zajszoknya, pedig csak amplitú-
dózaj volt a szinuszjelen. 

Mivel az ebben a függelékben elért eredményeket a
(6) ergodikus hipotézis nélkül értük el, és az elôzô ered-
ményeinkkel összhangban vannak, ez a hipotézis he-
lyességét támasztja alá.
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14. ábra 
Korrelált amplitúdózajjal terhelt szinuszjel elôállítása

16. ábra
A korrelált amplitúdózajjal terhelt szinuszjel spektruma

Vízszintes tengely: frekvencia (Hz),

függôleges tengely: spektrumkomponens amplitúdója dB-ben

15. ábra 
Az amplitúdózaj autokorrelációja 

számottevôen különbözik a Dirac-deltától

Vízszintes tengely: idô (sec), függôleges: autokorreláció


