Quantum information theoretical based
geometrical representation of
eavesdropping activity on the quantum channel
LAszLO GYONGYOSI, SANDOR IMRE

Department of Telecommunications, Budapest University of Technology and Economics
{gyongyosi, imre}j@hit.bme.hu

Keywords: quantum cryptography, quantum cloning, quantum informational distance

Quantum cryptography is an emerging technology that may offer new forms of security protection, however the quantum cloning
hased attacks against the protocol will play a crucial role in the future. According to the no-cloning theorem, an eavesdropper
on the quantum channel can not copy perfectly the sent quantum states. The hest eavesdropping attacks for quantum
cryptography are hased on imperfect cloning machines. In our method we use quantum relative entropy as an informational
distance hetween quantum states. We show a geometrical approach to analyze the security of quantum cryptography, hased on
quantum relative entropy and Laguerre Delaunay triangulation on the Bloch sphere. Using Laguerre diagrams, we can compute
efficiently the radius of the smallest enclosing ball of quantum states on the Bloch sphere. We present a basically new method

to derive quantum relative entropy hased Delaunay tessellation on the Bloch ball and to compute the radius of smallest
enclosing ball of halls to detect eavesdropping activity on the quantum channel.

1. Introduction

The security of modern cryptographic methods like asym-
metric cryptography, relies heavily on the problem of
factoring large integers. In the future, if quantum com-
puters become reality, any information exchange using
current classical cryptographic schemes will be imme-
diately insecure. Current classical cryptographic me-
thods are not able to guarantee long-term security. Other
cryptographic methods, with absolute security must be
applied in the future. Cryptography based on quantum
theory principles is known as quantum cryptography.
Using current network technology, in order to spread
quantum cryptography, interfaces able to manage toge-
ther the quantum and classical channel must be imple-
mented [2]. Quantum cryptography provides new ways
to transmit information securely, using the fundamen-
tal principles of quantum-mechanics. As classical cryp-
tography uses and manipulates classical bits, quantum
cryptography does the same with qubits to realize pro-
vably, absolute secure communication. In quantum cryp-
tographic schemes, the secret information is not enco-
ded directly into the quantum states, the qubits are used
only to generate a secret cryptographic key, shared be-
tween two legal parties, called Alice and Bob. The main
idea behind the quantum cryptographic protocols was
the absolute secure key distribution, hence we rather
call these cryptographic methods as Quantum Key Dis-
tribution (QKD) systems [2,7].

Using computational geometry, many complex high
dimensional problems can be expressed with graphs
and tessellation diagrams [6]. In our fundamentally new
security analysis of quantum cryptography, we derive
the fidelity of the eavesdropper’s cloning machine from
Laguerre-type Delaunay diagrams on the Bloch sphere.
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Using Laguerre diagrams, we can compute efficiently
the radius of the smallest enclosing balls of mixed states
on the Bloch sphere, and give the level of eavesdrop-
ping activity. The geometric interpretation of quantum
states can be used to investigate informational distan-
ces between two different quantum states [5,6]. We com-
pute the fidelity of the quantum cloning transformation
using the classical algorithm presented by Badoui and
Clarkson, and the Laguerre Delaunay triangulation on the
Bloch sphere [11,13].

Our paper is organized as follows. First we discuss
the basic facts about computational geometry and quan-
tum information theory. Then we explain the main ele-
ments of our security analysis, and we show the appli-
cation of our theory for the security analysis of eaves-
dropping detection on the quantum channel. Finally, we
summarize the results.

2. Preliminaries

The security of QKD schemes relies on the no-cloning
theorem [2]. Contrary to classical information, in a quan-
tum communication system the quantum information
cannot be copied perfectly. If Alice sends a number of
photons |y,), |yo),..., |yw) through the quantum channel, an
eavesdropper is not interested in copying an arbitrary
state, only the possible polarization states of the at-
tacked QKD scheme. To copy the sent quantum state, an
eavesdropper has to use a quantum cloner machine,
and a known “blank”state |0), onto which the eavesdrop-
per would like to copy Alice’s quantum state.

If Eve wants to copy the i-th sent photon |y), she has
to apply a unitary transformation U, which gives the fol-
lowing result:
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U(‘l//,>®|0>)=|l//,>®|l//,>, (1)

for each polarization states of qubit |y,). A photon
chosen from a given set of polarization states can be
cloned perfectly only, if the polarization angles in the
set that are distinct, are all mutually orthogonal [2,7].
The unknown non-orthogonal states cannot be cloned
perfectly, the cloning process of the quantum states is
possible only if the information being cloned is classi-
cal, hence the quantum states are all orthogonal. The
polarization states in the QKD protocols are not all ortho-
gonal states, which makes no possible to an eavesdrop-
per to copy the sent quantum states [2].

Our goal is to measure the level of quantum cloning
activity on the quantum channel, using fast computa-
tional geometric methods. The fidelity analysis of the
eavesdropper’s cloning machine indicates, how much
the eavesdropper preserves the quality of the cloned
quantum states. In our method, quantum informational
distance plays an important role in the estimation of the
fidelity of eavesdropper’s cloning machine.

2.1 The communication model

In our method we measure the informational theore-
tical impacts of quantum cloning activity in the quan-
tum channel. Alice’s side is modeled by random vari-
able X={p;=P(x,)},i=1,...N. Bob’s side can be modeled
by another random variable Y. The Shannon entropy for
the discrete random variable X'is denoted by H (X), which
can be defined as H(X)=—Z‘p,- log(p;), for conditional ran-
dom variables, the probab"ility of the random variable X
given Yis denoted by p(X|Y). Alice sends a random vari-
able to Bob, who produce an output signal with a given
probability.

We analyze in a geometrical way the effects of Eve’s
quantum cloner on Bob’s received quantum state. Eve’s
cloner in the quantum channel increases the uncer-
tainty in X, given Bob’s output Y. The informational the-
oretical noise of Eve’s quantum cloner increases con-
ditional Shannon entropy H (X|Y), where

Ny Ny
H(X[)==22 p(x.y )logp(x]y). @

i=l j=1

Our geometrical security analysis is focused on
the cloned mixed quantum state, received by Bob. The
type of the quantum cloner machine depends on the
actual protocol. For the four-sate QKD protocol (BB84),
Eve chooses the phase-covariant cloner, while for the
Six-state protocol she uses the universal quantum clo-
ner (UCM) machine [7,9,10]. Alice’s pure state is denot-
ed by p,, Eve’s cloner modeled by an affine map £, and
Bob’s mixed input state is denoted by L(p4)=0g. In our
calculations, we can use the fact, that for random vari-
ables Xand Y, H(X,Y)=H(X)+H (Y| X), where H(X), H(X,Y)
and H(Y|X) are defined by using probability distribu-
tions p(x), p(x,y) and p(y|x). We measure in a geometri-
cal representation the information which can be trans-
mitted in presence of an eavesdropper on the quantum
channel.
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In Fig. 1we illustrated Eve’s quantum cloner on the
quantum channel. Alice’s pure state is denoted by p,,
the eavesdropper’s quantum cloner transformation is
denoted by £. The mixed state received by Bob, is rep-
resented by 0.

Figure 1.
The analyzed attacker model and the entropies
H(X) H(X|Y)| |H(X)-H(X|r)
Alice’s pure Eve’s quantum Bob's mixed
qubit cloner input state
P i L L{p,)=0;
¥ ! |Quantum |
Random state ‘ Cloner
77777777777777777777777777777777 -Cloned
state

In a private quantum channel, we seek to maximize
H(X) and minimize H(X|Y) in order to maximize the ra-
dius r* of the smallest enclosing ball, which describes
the maximal transmittable information from Alice to Bob
in the attacked quantum channel:

r = Masx,

il posszblcx,}H(X) - H(X‘Y) (3)

To compute the radius r* of the smallest informatio-
nal ball of quantum states and the entropies between the
cloned quantum states, instead of classical Shannon en-
tropy, we can use von Neumann entropy and quantum
relative entropy.

Geometrically, the presence of an eavesdropper caus-
es a detectable mapping to change from a noiseless one-
to-one relationship, to a stochastic map. If there is no
cloning activity on the channel, then H(X|Y)=0 and the
radius of the smallest enclosing quantum informational
ball on Bob’s side will be maximal.

2.2 Geometrical representation of quantum states

A quantum state can be described by its density mat-
rix peC%9, which is a dxd matrix, where d is the level
of the given quantum system. For an n qubit system, the
level of the quantum system is d=2". In our model, we
use the fact, that particle state distributions can be ana-
lyzed probabilistically by means of density matrices.

A two-level quantum system can be given by its den-
sity matrices in the following way:

1{1+z x-iy

& 2\x+iy 1-z

where i denotes the complex imaginary i°=—1.

The density matrix p=p(x,y,2) can be identified with
a point (x,y,z) in the 3-dimensional space, and a ball B
formed by such points B={(x,y,z) | x*+y?+Z?<1}, is called
Bloch ball. The eigenvalues 14,4, of p(x,y,2) are given

» (li\/x2+y2+22 )/2, (5)

j,x2+y2+22£1, 4)
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the eigenvalue decomposition p is p=24,E;, where
EiE;is E;for i=jand 0 for i=j. For a mixed state p(X.y,2),
logp defined by logp=2(logh)E;.

In quantum cryptog/raphy the encoded pure quan-
tum states are sent through a quantum communication
channel. Using the Bloch sphere representation, the
quantum state p can be given as a three-dimensional
point p=(x,y,z) in R3, and it can be represented by sphe-

rical coordinates P =(l”,9,(/)) ’ ©)

where ris the radius of the quantum state to the ori-
gin, 0 and ¢ represents the latitude and longitude rota-
tion angles. Using the spherical coordinates, a three-
dimensional point on the Bloch sphere B, can be given

by: x = rsinf@cos g,
y=rsing, (7)
Z =rcosfcosp.

A mesh of the Bloch sphere B can be described as
a number of points connected in some way by lines, the
points and the lines of the mesh are referred to as edges
and vertices.
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Figure 2. Mesh of Bloch sphere
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Geometrically, the pure states are on the boundary
of the Bloch ball B, while the mixed states are inside the
Bloch ball. In Fig. 3the pure states with unit radius are
on the surface of the Bloch-sphere, while the mixed
states with radius r<1 are contained inside the sphere.

Figure 3.
The effect of the eavesdropper’s cloning transformation
in geometrical representation
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A pure state can be given by |y)=a|0)+3|1) and the
projector of the state is

1 N
|l//><l//‘ =5(1+n-a),

where A is the Bloch vector, and it can be given by
A =(2Re(af*),2lm(ap*), |a2-|B|?) [4,7].

2.3 Measuring distances between quantum states

In the proposed security analysis, the distance be-
tween quantum states is defined by the quantum rela-
tive entropy of quantum states. The relative entropy of
quantum states measures the informational distance
between quantum states. In our model, the informatio-
nal distance between quantum states is computed by
using their density matrices. The classical Shannon-
entropy of a discrete d-dimensional distribution p can
be given by

d 1 d
H(p)=) plog—==) plogp,.
i=1 i =1
The von Neumann entropy S(p) of quantum states is
a generalization of the classical Shannon entropy to den-
sity matrices [4,7]. The entropy of quantum states can be

iven by:
g y S(p)=-TIr(plogp). )
The quantum entropy S(p) is equal to the Shannon en-
tropy for the eigenvalue distribution:

d
S(p)=S(2)==> A logA,
=1

where dis the level of the quantum system.

The relative entropy in classical systems is a mea-
sure that quantifies how close a probability distribution
p is to a model or candidate probability distribution g
[4,7]. For p and g probability distributions the relative
entropy can be given by

D(pllg)=>. p log, f; : (1)

while the relative entropy between quantum states
measured by

D(p|o)= Tr[p(logp —loga)].
The quantum relative entropy plays a key role in the
description of the quantum state space. The quantum in-
formational distance has some distant-like properties,
however it is not commutative [4,7], thus D(p||o)= D(0]|p)
and D(p||0)=0 iff p=0, and D(p||0)=0 iff p=0. We note, that
if o has zero eigenvalues D(p||o) may diverge, otherwise
it is a finite and continuous function. The quantum rela-
tive entropy reduces to the classical Kullback-Leibler re-
lative entropy for simultaneously diagonal matrices.

(10)

(12)

2.4 Quantum relative entropy

The relative entropy between quantum states can be
described by a strictly convex and differentiable gene-
rator function F as:

F(p)=-5(0)=Tr(oloe ),

where -S is the negative von Neumann entropy function.

(13)
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The relative quantum entropy D(p||o) for density mat-
rices p and o can be given by generator function F in the
following way:

D(p|o)=F(p)-F(c)-(p-0.VF(c)). (14

where (p,0) =Tr(po™) is the inner product of quantum
states, and VF() is the gradient.

A

-S(p)

F=

Quantum state

Figure 4.
Visualizing generator function as negative
von Neumann entropy

The quantum relative entropy for general quantum
state p=(x,),z) and mixed state o=(X,y,2), with radius

2 = = ~ .
r,=yX"+y +z and r, =/X’ + 7 + 2 can be given by

1 1 1 1+r
[)(p||a):510g1(1_’?-) 2ﬂ10g21 rpg
(15)
11 1 1+7,
e S e

where{p,0) = (xX+yy+zZ). For a maximally mixed state
0=(X,¥,2)=(0,0,0) and r =0, the quantum informational
distance can be expressed as

e
Elog4(l ) 5/‘ log+—=

(16)
(1+ r ) 1 l 1
—10g—.
(1-r,) 2 5

The density matrices of quantum bits are represent-
ed by 3D points in the Bloch ball. If we compute the dis-
tance between two quantum states in the 3D Bloch ball
representation, we compute the distance between two
Hermitian matrices p and o.

The eavesdropper’s cloner transformation is model-
ed by an affine map, that maps quantum states to quan-
tum states. Geometrically, the effect of the eavesdrop-
per is to map the Bloch ball to a deformed ball. The clon-
ing activity in the channel can be analyzed by the radi-
us of the deformed Bloch ball, which can be computed
by geometrical methods.

In our security analysis we use Delaunay tessella-
tion, which is symmetric only for pure states, and asym-
metric for mixed states. It can be proven, that for pure
states the Delaunay diagram coincidences with Eucli-
dean Delaunay diagram, but for mixed states the Delau-
nay diagram is asymmetric, hence it is not identical to
Euclidean diagrams [16].
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3. Eavesdropping activity
on the quantum channel

In quantum cryptography the best eavesdropping at-
tacks use the quantum cloning machines [7-9]. How-
ever, an eavesdropper can not measure the state |y) of
a single quantum bit, since the result of her measure-
ment is one of the single quantum system’s eigenstates.
The measured eigenstate gives only very poor informa-
tion to the eavesdropper about the original state |y) [2,7].

Alice Bob

Pure i
states Eve’s Cloning Yixed

N Machine j

_E_)

Quantum Channel

P L(p)

Figure 5.
The effect of quantum cloning attack
on the sent pure quantum state

The process of cloning of pure states can be gene-
ralized as

), ®%), 8|0), > [¥),,,.

where |y) is the state in the Hilbert space to be co-
pied, |Z) is a reference state, and |Q) is the ancilla state
[7]. Acloning machine is called symmetric if at the out-
put all the clones have the same fidelity, and asymmet-
ric if the clones have different fidelities [8,9].

The no-cloning theorem has important role in quan-
tum cryptography, since it makes no possible to copy a
quantum state perfectly. In 1996 Buzek and Hillery pub-
lished the method of imperfect cloning, while the origi-
nal no-cloning theorem was applied only to perfect clon-
ing [2]. The asymmetric cloning machines have been
discussed for eavesdropping of quantum cryptography
in [10,15]. For attacks on some quantum cryptography
protocol, it has been proven that the best strategy uses
quantum cloning machines [7,9].

(17)

3.1 The smallest enclosing quantum-information ball

We would like to compute the radius r of the small-
est enclosing ball of the cloned mixed quantum states,
thus first we have to seek the center ¢* of the point set
S. The set S of quantum states is denoted by S={p;}",.

The distance function d(,-) between any two quan-
tum states of S is measured by quantum relative entro-
py, thus the minimax mathematical optimization can be
applied to quantum relative entropy based distances to
find the center ¢ of the set S. We denote the quantum
relative entropy from c to the furthest point of S by

d(c,S)=max d(c,p,). (18)
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Using the minimax optimization, we can minimize the
maximal quantum relative entropy from ¢ to the furthest

ointof S by . .
P Ve =argmin_d(c,S). (19)

In Fig. 6 we illustrated the circumcenterc* of S for the
Euclidean distance and for quantum relative entropy [1].

Figure 6.
Circumcenter for Euclidean distance ball and quantum
relative entropy ball

In our fidelity analysis we assume, that the eaves-
dropper’s cloning machine does a linear transform L
that maps quantum states to quantum states. The eaves-
dropper’s cloning transformation L is a trace-preserv-
ing, i.e. TrL(p)=Tr(p), and completely positive map [1].
The informational theoretical effect of the eavesdrop-
per’s cloning machine is described the radius of the
smallest enclosing quantum informational ball by r*. The
quantum informational theoretical radius equal to the
maximum quantum informational distance from the cen-
ter, and it can be expressed as:

m%n) mfvg D(E(p)”ﬁ(c)).
ceS(CT7) peS|(C-

In our procedure of computing smallest enclosing
information ball, we use quantum Delaunay diagrams,
because it is the fastestknown tool to seek a center of
a smallest enclosing ball of points.

r= (20)

4. Geometrical model of
secure quantum communication

4.1 Properties of quantum cloners

The maximal fidelity of the eavesdropper’s cloning
machine is denoted by Fg,,. The parameter Fg , repre-
sents the theoretical upper bound on the cloning ma-
chine’s fidelity [1]. For example, if Eve uses universal
quantum cloner, then the value of parameter Fg is in-
dependent of input quantum state |y), and the fidelity of
her optimal quantum cloning machine is

in ou in 1
) 5y )=5(1+77),

where n is the reduction factor. The quantum clon-
ing transformation optimal [8,9], if n=2/3, hence the ma-
ximal fidelity of optimal universal cloning is Fg,,=5/86,
and the maximal radius of the cloned state is

.= <1//

(21)

Jniversal 2
IEve - g (22)
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The quantum informational theoreticalradius can be
defined as
efin - (23)

]Ev/szverml — 1 _ S (FEH\}Z‘WMZ )’
where S is the von Neumann entropy of correspond-
ing quantum state with radius length rimversa,
In general, the universal cloning machine output state
can be expressed by [7-9]

P = F (//}u <(//| +(1-F,,)

Eve

7 l>u <1// i | (24)

4.2 Asymetric phase-covariant quantum cloner

Asymmetric cloning has direct application to eaves-
dropping strategies in quantum cryptography. The best-
known example of state-dependent quantum cloning ma-
chine is the phase-covariant cloning machine. Here,
the states lie in the equator (x—y) of the Bloch sphere,
thus the fidelity of the cloning will be independent of .
The phase-covariant cloning machine has a remarkable
application in quantum cryptography, since it is used in
the optimal strategy for eavesdropping [8-10]. The im-
portance of equatorial qubits lies in the fact that quan-
tum cryptography requires these states rather than the
states, that span the whole Bloch sphere [9].

In phase-covariant cloning, the transformations re-
strict for pure input states

)= 7500+

where the parameter ¢ €[0,27) represents the angle
between the Bloch vectorand the x-axis. These qubits
are called equatorial qubits, because the z-component
of their Bloch vector is zero. The phase-covariant quan-
tum cloners [9] can clone arbitrary equatorial qubits, and
they keep the quality of the copies same for all equato-
rial qubits. The reduced density operator of the copies
at the output can be expressed as [9]

(our) _

1 1
O AT A S

where |y, ) is orthogonal to state |y,). Thereby, the
optimal fidelity of 1 to 2 phase-covariant cloning trans-
formation is given by

Piifzmecov. — l+\/1 ~ 08535
2 \8

If Eve has a phase-covariant quantum cloner, then
the maximal value of her radius r2i® is
|
Eve g . (28)
The quantum informational theoretical radius r.2"s
of the phase-covariant cloner can be defined as

/"* phasecov. = 1 _ S ( 7 phasecov. ) ,

(25)

(26)

>

(27)

phasecov. __ 2

Eve Eve (29)

where S is the von Neumann entropy of correspond-
ing quantum state with radius length r2"¢ The phase-

Eve
covariant quantum cloning transformation produces two
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copies of the equatorial qubit with optimal fidelity. The
phase-covariant cloning transformation without ancilla
is a two-qubit unitary transformation, it can be given by
|0Y|0)—10)|0) and |1)|0)—cosn|1)|0)+sinn|0)|1), where
n€[0,7/2] is the shrinking parameter, which is related
to the fidelity.

In Fig. 7we compared the information theoretical ra-
diuses rjy,and r7, ..., of the smallest enclosing quan-
tum informational balls for idealistic UCM based attack
and idealistic phase-covariant cloner based attack. The
maximal distance states are denoted by p,,, and Pppasecon

A

4

UCH-..

.-"”"‘ } x
p phasecov

Figure 7.
Comparison of smallest enclosing quantum informational
balls of idealistic UCM and phase-covariant based attack

The best quality of the two outputs simultaneously
can be realized with an UCM. If an eavesdropper uses
a phase-covariant cloner, one of the two outputs should
have better fidelity, while the fidelity of second output
will be lower.

4.3 Quantum cloning detection

In our model we derive the fidelity of the eavesdrop-
per’'s cloning machine from the quantum informational
theoretical radius r* of the smallest enclosing quantum
informational ball, and the theoretical upper bound on
the quantum informational theoreticalradius of the eaves-
dropper’s cloning machine denoted by rZ , [1].

As the first part of our theorem, for a secure quantum
channel, the radius r* of the smallest enclosing quan-
tum information ball of mixed states has to be greater
than r? , thus

*

Quantum information theoretical based geometrical representation...

In our security analysis, we use the spherical De-
launay tessellation to compute the quantum information
theoretical radius r*, since it can be simply obtained as
an ordinary Euclidean Delaunay triangulation mesh. The
quantum relative entropy based Delaunay tessellation
of pure states is identicalto the conventional spherical
Delaunay tessellation, and it differs between mixed quan-
tum states [6].

5. Tessellation on the Bloch sphere

5.1 Mathematical background

The dual of Delaunay diagram of a set of quantum
states on the Bloch ball ‘B, is the division of the space
into regions. The regions contain the part of the quan-
tum space which is closer to that point than any other.
Formally, for a given set of quantum states S={p;,0,,...0,}
in RY, the Voronoi diagram V(S) is the partition of R?
into n polyhedral regions, one for each quantum states
pi- These regions on the Bloch ball B are the Voronoi
cells, denoted by vo(p), containing the points in R¢which
are closer to quantum state p than all other points.

Formally, the Voronoi cell vo(p) for quantum state p
and the set of quantum state S can be given by

vo(p)=
{xeﬂ%d d(x,p])gd(x,p‘/)es{ﬂ}}’

where d() is the distance function. The Voronoi ver-
tices are in the intersections of the bisectors or bound-
aries, as we illustrated it in Fig. 9.

(32)

Figure 9. An Euclidean tessellation on the Bloch ball

\
\
\

Eve’

> (30)

As the second part, for an insecure
quantum channel, the radius r* is smal-
ler than or equal to rf,, thus

* * 31
S, 31

In Fig. 8 we show the geometrical

interpretation of our model [1].

ve’

Figure 8.

The radius of the smallest enclosing
information ball for

a secure (a) and insecure (b)
quantum communication

Bloch ball

_~"smallest enclosing bali".._

insecure quantum
channel

secure quantum
+ channel

insecure quantum
channel
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On the Bloch ball B every vo(p) corresponds to a
quantum state p, thus we have n Voronoi cells for n quan-
tum states, and there are O(n) vertices and edges [6].

5.2 Delaunay triangulation in the quantum space

We use the Voronoi vertices in our security analy-
sis, since these vertices play a crucial role in the com-
putation of Delaunay triangulation on the Bloch ball ‘B.
The circumcenter of the given quantum states is the
circle that passes through the quantum states p4 and
p» of the edge pyp, and endpoints py, p, and p; of the

triangle pyp2ps.

P £

s

Pa

Figure 10.
The Delaunay triangulation of a set of quantum states

The triangle tis said to be Delaunay, when its cir-
cumcenter is empty [6]. The circle centered at a vertex
¢, gives an empty circumcenter for quantum states {p4,
P2, p3}. The Delaunay triangulation of a set of quantum
states S, denoted by Del(S), is unique, if at most three
quantum states peS are co-circular [5]. The Delaunay
triangulation Del (S) of a set of quantum states S={py,
P2, --Pn} Maximizes the minimum angle among all trian-
gulation of the given set of quantum states.

Delaunay
tesselation

Quantum
states on the

/ Bloch ball

In our security analysis we use the fact, that the Vo-
ronoi diagram V(S) of set of quantum states S, and the
Delaunay triangulation D(S) are dual to each other in
Euclidean space, and in the quantum space with geo-
desic edges [6].

Using the Voronoi-Delaunay duality, every triangle
teDel(S) corresponds to a vertex veV(S), and every
edge e(p,0)€ Del(S) in the Delaunay triangle between
two quantum states in S corresponds to the boundary
edge between the Voronoi cells vo(p) and vo(o).

Figure 12. The empty ball property for quantum
Delaunay triangulation

The quantum Delaunay diagrams between mixed states
differ from Euclidean diagrams, as we have illustrated
itin Fig. 12.

In Fig. 13/awe illustrated the dual-Delaunay diagram
for pure quantum states, with unit length radiuses. The
quantum diagram for pure states is equivalent to the or-
dinary Euclidean diagram on the Bloch-sphere.

In Fig. 13/bwe illustrated the quantum diagrams for
mixed states with radiuses rp,,;4<1, in the Bloch ball re-
presentation. Since the quantum informational distance
is asymmetric, we can define two types of diagrams. The
first-type diagram is illustrated by bold lines, the dash-
ed lines show the dual curved, second-type diagram.

Figure 11.

The triangle of quantum states
corresponds to the vertex c,
which is the center of

its circumcenter (a)

and Delaunay tessellation

on the Bloch sphere (b)

Figure 13. <

Dual-Delaunay diagram X

for pure states (a)

and for mixed states (b)

on the Bloch ball.

For mixed states,

the quantum diagrams differ
from the Euclidean diagram.
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As we can conclude, the quantum diagrams of pure
quantum states are equivalentto ordinary Euclidean dia-
grams. The quantum diagrams of mixed states with dif-
ferent radiuses are equivalent to quantum information-
al diagrams.

5.3 Laguerre diagram for quantum states

We use Laguerre Delaunay diagram to compute the
radius of the smallest enclosing ball [6]. In generally, the
Laguerre distance for generating quantum state x; and
with weight r? can be expressed as

22
d,(p.x)=|lp-x| -
The Delaunay diagram with respect to the Laguerre
distance is called Laguerre Delaunay diagram. For the
Laguerre bisector of two three-dimensional Euclidean

balls B(p,r,) and B(o,r,,) centered at quantum states pand
o, we can write the following equation [6]:

2 2
2(x,c—-p)+{p.p)—(c.0)+ri—r =0. (34
The bisector equation for the ordinary three-dimen-

sional Euclidean Delaunay tessellation can be given by

2(x,0-p)+(p.p)—(c,0)=0, (35)

thus for pure quantum states, where rZ = rZ, the quan-
tum relative entropy based Delaunay tessellation on the
Bloch ball coincidences with the ordinary Euclidean dis-
tance based Delaunay tessellation [6]. On the Laguerre
diagram, the center of the quantum informational ball can
be described by the density matrix X; as [6]:

(33)

log4, O !
= = o 36
VF, (;(7) log 7, Al[ 0 logﬂ“jA” (36)
where (37)
x/ B l)/7 17 + Z’ x7 B Iy] r; B Z7
o] NEE R BN RN B

, :
V2 /’7—27 [n+z
h h

We illustrated the dual diagram of the Laguerre De-
launay tessellation in the Euclidean space in Fig. 14.

Figure 14.
Laguerre diagram for quantum states on the Bloch ball

Quantum
states on the
Bloch ball

Quantum information theoretical based geometrical representation...

The squared radius r? of the quantum state p; on the
Bloch sphere can be given by
2

ri= (38)

(VE, (0).VE, () +2(F (9)~(p.VF, (p))

As we can conclude, for weight r?, the Laguerredis-
tance d;(p,x;) can be interpreted as the square of the
length of the line segment starting at p and tangent to
the circle centered at x;, with radius Vr?. Thus, the cir-
cle centered at x; with radius \/? is the circle associa-
ted with x;.

6. The proposed algorithm
for quantum cloning detection

In our algorithm we present an effective solution to seek
the center ¢ of the set of smallest enclosing quantum
information ball, using Laguerre diagrams.

Our geometrical based algorithm consists of two main
steps:

1. We construct Delaunay triangulation from

Laguerre diagrams on the Bloch ball.

2. Seek the center of smallest enclosing ball.

A Delaunay triangulation in the d-dimensional quan-
tum space can be obtained by other methods, like a pa-
raboloid in the d+1 dimensional space expressed by
Xgq=X2+...+x% and tangent planes at the points [1]. In
this method we can use the fact, that the lower envelope
of the tangent planes is a Delaunay diagram [3,17]. How-
ever, in this paper we show a more effective algorithm to
compute Delaunay tessellation on the Bloch sphere ‘B.

Figure 15.

Tessellation on the Bloch ball obtained
by Laguerre diagram

Quantum
states on the
Bloch ball

Quantum
states on the
Bloch ball
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6.1 Construction of Delaunay triangulation
from Laguerre diagrams

In our algorithm, we use the fact that the Delaunay
tessellation can be computed by Laguerre diagrams,
thus we can give the tessellation from the Laguerre dia-
gram of a set of corresponding ball [5].

In Fig. 15 we illustrated the Laguerre diagram on the
Bloch ball, and the construction of Voronoi diagram.

We use the results proposed in [5], to construct the
quantum relative entropy based dual diagram of the De-
launay tessellation, using the Laguerre diagram of the
n Euclidean spheres of equations

(x=pl.xpl)= @)
(PP +2(F(p)=(p.P))). (i=L.on).
where p; and p; denote the first-type and second-

type diagrams. In Fig. 16 we show the ordinary triangula-
tion of quantum relative entropy based Voronoi diagram.

states on the
Bloch ball

Figure 16. Ordinary Euclidean Delaunay triangulation

The centers of the Euclidean spheres are p;, and p;=
o/, thus r?=0. The generator function of the quantum re-
lative entropy based diagram is the negative quantum
entropy F(x)=Xx;logx;, and the gradient VF(x)=[logx,...
logx,]”. On the'quantum relative entropy based diagram,
we map quantum state p=[p;...04]” to a Euclidean ball
of center p'=[p,...04]" [5], with radius r?=2(log?p,—2p)).
The most important result of this equivalénce, that we
can construct efficiently quantum relative entropy based
Delaunay triangulation on the Bloch sphere using Euc-
lidean spheres, which can be calculated efficiently by
fast algorithms [5].

6.2 Seek the center of
the smallest enclosing quantum informational ball
In our security analysis we use an approximation
algorithm from classical computational geometry to de-
termine the smallest enclosing ball of balls using core-
sets. We apply the approximation algorithm presented
by Badoui and Clarkson, however in our algorithm, the
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distance measurement between quantum states is bas-
ed on quantum informational distance [11,13]. To apply
our approximation algorithm in eavesdropping activity
detection, we use the E-core set C for the minimax quan-
tum information ball of set of quantum states S [11]. The
E-core set Cis a subset of the set CCS, such for the cir-
cumcenter ¢ of the minimax ball

d(e,S)<(1+&)r,
where ris the radius of the smallest enclosing quan-
tum information ball of set of quantum states S. Our geo-
metrical based eavesdropping detection can be com-
puted very effectively, based on the fact that approxi-
mating algorithm can find the radius r of the smallest
enclosing ball of balls in O(dn/E?) time, with an (1+E)
approximation [11]. Moreover, in the applied approxi-
mation algorithm the core-set sizes are bounded by 2/,
independently of the dimension [13,14].

(40)

Quantum relative entropy based approximation

The approximating algorithm, for a set of quantum
states S={s4,...,S,} and circumcenter c first finds a far-
thest point s, of ball set B, and moves ¢ towards s, in
O(dn) time in every iteration step. The algorithm does
|1/E2] iterations to ensure an (1+E) approximation, thus
the overall cost of the algorithm is O(dn/?) [11].

The main steps of our quantum relative entropy based

algorithm are:
Algorithm

1. Select a random center ¢, from the set of quantum states S

c =5
. 1
for 1:1,2,..{ 7—‘
[ £

do

2. Find the farthest point s of S wit. quantum relative entropy

S «argmax _; D; (c,.s')

s'eS

3. Update the circumcircle:

N 1 ,
Cn < VF1 (EVF (ci)+va (5)j
4. Return ¢,

We denote the set of n d-dimensional balls by B=
{by,...,bs}, where b;=Ball(s;r;), where S;is the center of
the ball b;, and r;is the radius of the j-th ball radius. The
smallest enclosing ball of set B={by,...,b,} is the unique
ball b*= Ball(c*,r*) with minimum radius r* and center c¢”,
containing all the set {b4,...,b,}. The smallest enclosing
ball of a ball set, can be written as min.Fg(c), where Fg(X)
measures the relative entropy between quantum states
[14]. The minimum ball of the set of balls is unique, thus
the circumcenter ¢* of the set of quantum states is:

¢ =argmin_F(c). (41)

In Fig. 17 we illustrated the smallest enclosing ball
of balls in the quantum space.

At the end of our algorithm, the radius r* of the small-
est enclosing ball B* with respect to the quantum infor-
mational distance is equalto min max D(£(p)|£(5))-
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b'= Ball (cﬂ:, r*)

Quantum
states

Figure 17.
The smallest enclosing ball of a set of balls
in the quantum space

The security of the quantum channel is determined
by our geometrical model with assumptions r*>rg,, and
r‘srg,. as we have defined it in Eq. (37) and (38).

Finally, the approximated value of the fidelity para-
meter Fg,, can be expressed as:

FEW — <l// (in) p(our)|l//>(’”) — %(1+ f’), (42)

where r can be derived from the quantum informa-
tional theoretical radius r*by r*=1-S(r), where S is the
von Neumann entropy.

In Fig. 18 we compared the smallest quantum infor-
mational ball and the ordinary Euclidean ball (dashed-
line) for a random set S of mixed quantum states. As we
can conclude, the quantum states p;,p,and p; which de-

Figure 18.

The maximal distance states of

the smallest balls are differing for quantum informational
distance and Euclidean distance

Quantum information theoretical based geometrical representation...

termine the Euclidean smallest enclosing ball, differ from
the states of the quantum informational ball.

6.3 The computational complexity of
the proposed algorithm
The quantum relative entropy based algorithm at
the i-th iteration gives an O(1+\/i)-approximation of the
real circumcenter, thus to get an (1+€) approximation,
our algorithm requires

oo 2t)-o 2

time, by first sampling n=1/¢ points. Based on the
computational complexity of the smallest enclosing ball,
the (1+¢) approximation of the fidelity of the eavesdrop-
per cloning machine can be computed in O(d/¢?) time.
As future work, we would like to improve our method to
get an O(d/e) time (1+¢)-approximation algorithm in quan-
tum space.

(43)

Figure 19. Mixed quantum states in the Bloch ball

“ae .
"""""""
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Figure 20.
Voronoi cells of quantum states on the Bloch ball

7. An illustrative example

Finally, we summarize the steps of our quantum rela-
tive entropy based cloning machine detecting algorithm.
In the next example, we compute the smallest enclos-
ing quantum information ball for three mixed quantum
states. In Fig. 19, the mixed quantum states in the Bloch
ball denoted by py, p, and p;. The radius of the quantum
states are denoted by r,,r, and r,.

First, we determine the Voronoi cells for the mixed
quantum states. The Voronoi cells in the Bloch ball are
denoted by vo(p,), vo(p,), and vo(p;). The distance be-
tween quantum states calculated with respect to quan-
tum relative entropy.

Figure 21.
Delaunay triangle with respect to quantum informational
distance

Figure 22.
The smallest enclosing quantum informational ball
and its radius

In the next phase we compute the Delaunay trian-
gulation with respect to quantum relative entropy. The
quantum informational Delaunay triangle is distorted, ac-
cording to the distance properties of quantum relative
entropy.

In Fig. 21 the quantum Delaunay triangle is denoted
by Del(p;, p», p3)- The bisector points between the quan-
tum states with respect to quantum relative entropy
denoted by points v;, v, and v, The bisectors intersect
the center of the smallest quantum informational ball,
denoted by c¢*. Finally, we get the radius r*of the small-
est enclosing quantum informational ball, centered at
point ¢*. The distorted structure of the smallest enclos-
ing quantum relative entropy ball is well observable in

Fig. 22.
Figure 23.
The smallest enclosing quantum informational ball
inside the Bloch sphere
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In Fig. 23 we show an example for a two-dimensio-
nal smallest enclosing quantum informational ball. This
quantum relative entropy ball is a deformed ball, thus
our approximation algorithm is tailored for quantum in-
formational distance.

The center ¢ *of the smallest enclosing quantum infor-
mational ball differs from the center of an Euclidean ball.

In this given example, the center point is ¢*(x,y)=
(0.3287,0.3274), and the radius r*of the smallest enclos-
ing quantum informational ball is r*=0.4907.

8. Conclusions

We showed a fundamentally new approach to measure
the information theoretical impacts of quantum cloning
on the private quantum channel. In our analysis the fi-
delity of the eavesdropper’s cloning machine is nume-
rically computed by tessellation on the Bloch sphere.
In classical computational geometry Delaunay triangu-
lations has an important role [4]. Using Delaunay tes-
sellation on the Bloch sphere, the quantum space can
be divided very efficiently.

We showed, that we can use efficiently Laguerre dia-
grams on the Bloch sphere, since the Laguerrediagrams
are defined both on mixed and pure quantum states.
We presented a novel approach to compute the relative
quantum entropy, using an approximation method for
the smallest enclosing ball of balls using core-sets. We
presented an effective approximation algorithm to com-
pute the informational fidelity using quantum informa-
tion balls, equipped with quantum relative entropy as a
distance measure.

As future work we would like to present a more ef-
fective algorithm to compute the eavesdropper’s clon-
ing machine, and make a deep study on our algorithm’s
convergence rate.
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