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Traffic analysis of network segments is an effective method to reveal suboptimal configuration, hidden faults and security threats.
If the analysis results are promptly acted upon, improvements in service quality are experienced by hoth the network operator
and the end user. The concept of the Knowledge Plane (KPlane), and later the Monitor Plane (MPlane) has heen introduced

to support Autonomous Networking goals. The tasks of processing the network element, service and traffic information belong
to the MPlane. It feeds the KPlane with valuable information, based on which configuration changes are actuated.

Although the concept of KPlane is widely used in various levels of network and service management, general traffic analysis is
not yet utilized to support decision making procedures. Traffic mix and traffic matrix analysis results are of major interest

in the decision making process at the KPlane. In this paper the issues of traffic sensing at the high speed interfaces of

the Monitoring Plane are covered, followed by a discussion on traffic mix and traffic matrix analysis methods.

1. Introduction

The optimization of network and service resources and
the maximization of end-user experience are not ne-
cessarily conflicting terms. The reason for such belief
lies in the fact that current network operators and ser-
vice providers lack of up-to-date, usable information
on their traffic. The questions of “how much” of “what”
actually are traversed on the various network segments,
where is that traffic “originated from” and where is it “dist-
ributed toward” are rarely answered.

According to the main argument of [1], the users
and the operators suffer from the lack of a serious, pur-
poseful optimization effort in the traditional Internet.
The transparent core has no knowledge about the data
transported, and even if the intelligent edge nodes re-
alize that there is a problem, the core might not be aw-
are of what should be done. The low-level decisions (at
the edge) are rarely relate to the higher-level goal (of
the core). On the user side this results in meeting the
service level agreement only in coarse granularity: it
is measured in long periods and more at a network le-
vel, rather than on a per-service basis.

The solution for gaining knowledge about network
status and traffic characteristics is to gather and pro-
cess such data, which then provide a basis to trigger
corrective actions. The authors of [1] suggest to hand-
le this knowledge in the Knowledge Plane (KP), an ab-
stract entity that completes a triad together with Data
Plane and Control Plane (see Fig. 1).

In the original KPlane concept, the input is taken by
sensors and the output is given by actuators. A practi-
cal variation of this architecture, detailed in [2], splits
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the KPlane into monitoring plane and knowledge plane.
The separation of those is an obvious step: the actual
“network monitoring units” (sensors) that capture and
pre-process traffic data represent the “monitoring pla-
ne”, similarly as depicted in Fig. 1. There are further
variations and additions to this architecture; we will re-
view these in the section of Related Works, together
with a short review of decision making methodologies
and practical examples from the field. Fig. 1 depicts the
relation between the Knowledge, Control, and Data Pla-
nes. The probes/sensors take data from both the con-
trol and data planes, and report pre-processed infor-
mation for the status processing module, where further
analysis takes place. The actuator in the model is the de-

Figure 1.
Functions of the Knowledge Plane and its connections
to Control and Data Planes
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cision maker module, which provides triggers for the
control plane, completing the self-management cycle.

The main source of “knowledge” is the actual traf-
fic of the Control and Data Planes. Although some traf-
fic characteristics can be gathered by analyzing the
Control Plane messages, many important applications
— such as peer-to-peer (P2P) downloads, video stream-
ing, or interactive voice — hide their control messages,
hence their identification is only possible through Deep
Packet Inspection (DPI) of the traversed traffic. The aim
of Traffic Mix analysis is to determine the distribution of
volumes for services and applications utilizing the net-
work. Similarly, Traffic Matrix analysis provides results
about traffic volumes — and if possible, further charac-
teristics — broken down by route directions. The second
part of this paper discusses our proposed, unique me-
thod of Traffic Mix and Traffic Matrix analysis.

2. Related work

Kim et al. summarize the research and development
ideas and efforts in management of the Future Internet
in [4], specifically reviewing the research activity in
the EU, USA and Korea. The authors emphasize the com-
mon interest and importance of measurements, moni-
toring, knowledge representation and reasoning. The ori-
ginal idea of introducing a higher level intelligence to
the core about its traffic and general status first appe-
ared in [1], where Clark et al. introduced the concept of
the Knowledge Plane. Besides providing very clear mo-
tivations, this groundbreaking paper suggested to sol-
ve networking issues by using methods devised in the
field of Artificial Intelligence (Al). Since then, experts of
both area — Network Management, and Al — elaborated
various versions of the KPlane concept in great depth.

Li described a layered architecture in [3], where NetkKP
— the network layer — organizes agents to gather and
provide valuable information to the higher-level entities,
specKPs, which handle and act upon their own inte-
rest, i. e., routing optimization or intrusion detection.
Figure 2.
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Another variant of splitting is suggested by [6], mo-
tivated by the need to get to the kernel of self-functions
defined by autonomous networking drives. Hence, the
processes in KPlane are based on two loops: a colla-
borative loop and an adaptation loop. The KPlane itself
includes a knowledge base, a reasoning engine, a know-
ledge sharing process, and a machine learning pro-
cess. In this model, Monitoring functions remain outsi-
de the KPlane.

Dietterich et al. found that the application of distri-
buted, model-based reasoning agents is a feasible and
successful approach for certain fault diagnostics tasks
that involve the KPlane. In their report (see [5]) one of
the main motivations was to involve Machine Learning
in KPlane. Although their findings show that these met-
hods can contribute to the KPlane, they do not suggest
to have machine learning as a key element of KPlane.
Their paper also includes interesting reports on fault
detection case studies, including DNS diagnosis, and
a scenario where a typo in BGP (Border Gateway Pro-
tocol) tables was revealed.

The IST-MUSE project resulted in many ideas and
implementations in relation to KPlane. Besides separa-
ting the Monitoring Plane from the KPlane in [2,7, and
8], they further introduced the Action Plane (APlane).
They also defined a knowledge base that is commonly
reachable by KPlane, MPlane and APlane. Fig. 2depicts
their connection and relation to the network. The main
motivation in these papers is to eliminate QoS (Quality
of Service) and QoE (Quality of Experience) issues in
the access network for VolP, IPTV and other multime-
dia services. Instead of gathering knowledge from ove-
rall data plane traffic, these papers rely on designated
protocols (i.e. RTP, Real-time Transport Protocol) and
protocol analysis of the control messages.

The Monitor Plane is extensively used in [9] as well,
where a complete, “access control list”-based VolP ser-
vice management system is described and evaluated.
The KPlane in this paper is put in a different context: its
functionalities include Call Data Record generation and
visualization.

Although KPlane was not mentioned in [11] all of its
features appear in the service management framework
described in the paper: measurements, monitoring, da-
ta processing/mining, decision making, knowledge bas-
es and machine learning. The presented framework has
been effectively used for fault detection and elimination
for Ethernet services and for VolP services [11] as well.

A specialized KPlane is suggested in [12] in order
to handle current QoS problems with protection routing
algorithms in GMPLS over WDM (Generalized Multipro-
tocol Label Switching over Wavelength Division Multi-
plexing) networks. This is a clear example of using a
variation of the KPlane concept to enhance concrete
routing methods’ speed and effectiveness.

It is clear that the concept of Knowledge Plane is
widely used in various levels of network and service
management. Nevertheless, general traffic analysis is
not yet utilized in order to support decision making in
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the KPlane. In the following sections we describe the
suggested management architecture, traffic analysis
concept and two methods to extract valuable informa-
tion about the traffic mix and the traffic matrix.

3. The Monitor Plane

In this paper we follow the architecture suggested in
[8] (see Fig. 2), and closely examine the functions and
requirements of the Monitor Plane. This function is crys-
tallized at the original definition of autonomous net-
works, in [13], defining the foursome of “Monitor-Analy-
ze-Plan-Execute” (MAPE) functions. The core function
of the MPlane is to provide complete and detailed view
of the network and its services. Probes at every element
(access nodes, routers, switches, content servers, links,
etc.) monitor the element status as well as traffic para-
meters.

Although built-in probe modules seem convenient,
passive probing is more desirable. Active network ele-
ments (such as routers or switches) keep their proces-
sing priorities to their main job, occasionally leaving
the Knowledge Base without information. These occa-
sions of degradation in the status reporting function
happen at the worst time from the KPlane’s point-of-
view - for practical reasons. It gets degraded at the ti-
me when the element is getting overloaded. Coinciden-
tally, such detailed reports of overloading would be the
most beneficial for the KPlane. This is why passive
probing is more desirable to gather information on the-
se elements.

After capturing the raw data, processed, grouped,
and filtered traffic information gets inserted into the
Knowledge Base by the probes. Both packet- and flow-
level analysis reveal important characteristics on los-
ses, delays, and jitters in the traffic, routing specialties,
network structure changes and violations of the SLS
(Service-Level Specification).

We are focusing on gathering these characteristics
by passive monitoring. In the following subsections we
briefly describe the basic requirements and mecha-
nisms enabling this method.

3.1. Basic functions of the probes

The inevitable function of the network monitoring
probes is catching, filtering, and preprocessing the traf-
fic. These tasks should be completed for the whole net-
work. Since installing and maintaining such a monito-
ring network could be an enormous effort for the ope-
rator, introducing the MPlane at the highest aggregation
parts (i.e. monitoring the fastest links) can be a good
decision. Monitoring these relatively few points allows
gathering all packets that traverse the network, although
some locally looping traffic could be left out of the ana-
lysis.

The probes should have the following crucial func-
tionalities:

* Creating timestamps for the packets. Time-stamping
done by hardware (firmware) facilitates much more pre-
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cision than by software, since it avoids possible laten-
cies due to the operating system.

* Filtering on hardware level. High-speed traffic (i.e.
currently 10 Gbps or above) presently allows no option
for on-the-fly filtering in software. Clearly defined, low
level filters are very useful: they can dramatically dec-
rease the data to be analyzed.

» Truncating incoming packets. For the majority of
the network analysis functions, statistics-counting, or
fingerprint analysis, it is not necessary to use the whole
IP packet, only the first portion of it. A practical example
is truncating at 128 bytes, which keeps TCP and IP head-
ers as well as the beginning part of application headers
that are helpful for identification, since it contains fin-
gerprints for P2P or video.

« Traffic processing. The main traffic processing func-
tionalities are briefed in the next section.

» Encapsulation and presentation of preprocessed
data. The traffic analysis results must be structured and
packed when passed over to the Knowledge Base.

3.2. Traffic processing

The time-stamped, filtered, truncated packets must
be processed in order to reveal network and service
statuses. Depending on the traffic volume, and the depth
of the analysis, this processing can be fed into one or
many processors. In order to keep up with the ever in-
creasing traffic and the demand for complex analysis,
the processing system must be highly scalable. As di-
scussed earlier, monitoring core links has the advan-
tage of utilizing all through-traffic (that traverses the net-
work), although it requires equipment being able to mo-
nitor high-speed (currently 10 Gbps Ethernet) links wit-
hout frame loss.

For low analysis demand (when one CPU can deal
with the challenges), a highly reliable monitoring card,
such as SGA10GED can be used to capture the traffic.
(This card has been developed as part of the CELTIC
TIGER2 project, partially funding our research.) It fits
into a PCI slot of an industrial grade PC, where it cap-
tures, timestamps, filters, and truncates packets before
passing it to the main CPU where Traffic Analysis is per-
formed.

Figure 3.
A scalable solution for Traffic Analysis of
high-speed network links
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In cases where on-the-fly, complex analysis is re-
quired on highly utilized links, the SCALOPES C-board
is a highly scalable solution. (The C-board has been
developed as part of the ARTEMIS SCALOPES project,
partially funding our research.). It is a standalone, FPGA-
based hardware, equipped with 2x10 Gbps Ethernet in-
terfaces and 16x1 Gbps Ethernet interfaces. When used
as part of the Monitor Plane, it is also preprocessing
the packets, but rather than passing their data to one
CPU, it distributes them among many monitor units thro-
ugh its 1 Gbps Ethernet Interface. The standalone Moni-
tor Units then carry out traffic analysis, and present the
results to the knowledge base. Fig. 3 depicts such a
scenario. Detailed description of this system can be
found in [14].

The distinct analysis tasks — such as flow separa-
tion, application identification, QoS-related parameter
calculation per flow/application/route — are managed
by separated modules, so the parallel tasks can be run
on distinct processors in the same time. Moreover, the
inactive modules can be turned off to save power.

The tasks of the monitor units in this architecture are
the following:

— collect and decode all the incoming information

continuously (in 7/24 manner),

— check filtering rules predefined by the network
operator, execute conditional controlled orders/
commands (conditional packet saving, alarming),

— structured data storage
(raw data, statistics, assays, alerts)

— generation of packet- and flow-level counters
on volume, loss, delay, jitter

— generation of specialized traffic reports,
such as traffic mix and traffic matrix

— database handling, remote access/query
(Remote Capture, Session/Flow Trace)

4. Methods for retrieving
traffic-specific knowledge

4.1. Traffic Matrix calculations

Traffic Matrix is a network planning and develop-
ment tool. During Traffic Matrix analysis, basic QoS
statistics are periodically created on flow-level, and
matched to originating and destination routes, network
segments, or endpoint pairs (such as IP address(-ran-
ge) pairs, MPLS tunnel endpoints, etc.). The first step of
the analysis is determining the flows by an n-tuple (i.e.,
“5-tuple”: from-IP, to-IP, from-port, to-port, protocol), and
building/refreshing the flow-database. Once the target-
ed data structure is clarified, the algorithms of Traffic
Matrix calculation are of low complexity. Such algo-
rithms are described in [15]. The result of the measure-
ment can be used to display periodical statistics that sup-
port network planning or service marketing activities.

The actual Traffic Matrix can easily contain endpoint-
pairs in the magnitude of 105. It is challenging to dis-
play such huge amount of data in a way that humans
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understand. While the raw results should be made ava-
ilable for reference in the Knowledge Base, some kind
of data grouping should also be applied for visual pre-
sentation. One example of a good solution is to group
the matrix elements into network segments, based on
their destination addresses. The aim of the grouping al-
gorithm is never to display high, invisible amount of seg-
ments (e.g. more than 15). When the operator wishes to
peek inside a segment’s statistics, he/she get it dis-
played as a deeper layer of the matrix.

This way the calculated QoS parameters show up
in an aggregated manner in the segment-to-segment
relation. If the system allows manual definition of seg-
ment-creation rules, operators can gather valuable in-
formation by grouping their endpoints into various seg-
ments. An example screenshot from a solution integra-
ted in our system is shown in Fig. 4.

4.2. Traffic Mix Statistics

Traffic mix analysis is the classification of traffic
flows into application types, and then evaluating these
for the service parameters important for the given ap-
plication type. Flows are classified by means of statis-
tical indicators and, if necessary, behavior heuristics.
The most important flow types include video stream,
video conference, or simple download of videos, audio
stream, VolIP, and peer-2-peer.

An application belonging to a traffic-class can be
identified by using static identifiers (e.g. port-based), dy-
namic identifiers (e.g. changing ports, fingerprints) or
by applying packet-level statistics-based evaluation me-
thods (i.e., Naive Bayes). Powerful identification methods
for VolIP, video and p2p applications are described in
[17-19] respectively. We used these methods success-
fully during the CELTIC TIGER2 project — see [20] for
details.

Figure 4.
Screenshot of a Traffic Matrix visualization application [16]
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Once a traffic flow is identified (i.e., based on 5-tup-
le), various metrics are calculated in order to help iden-
tifying the traffic-class. These metrics are the following:

— throughput: transferred data bytes per second,

— packet loss: the rate of received packets and
total transmitted packets in a given time interval,
or during the connection,

— packet delay: depending on the network topology
and link load it takes a certain amount of time to
receive a packet after it was sent; there is also
a gap (delay) between packets on the wire,

— jitter: network load is not always static:
as conditions and usage changes over time,
packet delay changes as well — this is called jitter,

— round-trip-time: interactive applications require
fast replies, which can be characterized
with this parameter,

— out of order/duplicated packets.

Fig. 5 depicts a partial result of one of our measure-
ments at a major ISP. It visualizes the number of paral-
lel VoIP sessions (upper diagram) and the traffic volu-
me (in kbps). The different kind of VoIP traffic are repre-
sented with different colors, which are — from bottom to
top — a) Skype over UDP, end-to-end; b) Skype over
UDP, end-to-office; c) other type of VolP, d) Skype over
TCP.

5. Decision Making

Since processing of network status is continuous at the
KPlane, and faults/attacks may happen at any time, so
decisions on corrective actions have to be made on-the-
fly as well. The Action Plane should be notified (in-
structed) about these actions for execution. Although
the accuracy of decisionmaking process is the key, it
is limited by the variety of the input information — which
is in this case merely traffic-related. Beside the accu-
racy, speed is also a key factor.

In order to understand the complexity of the deci-
sion making problem, a short review the main challen-
ges are necessary. Clark et al. [1] points out three sig-
nificant issues that need to be addressed by the Know-
ledge Plane.

1. The KPlane needs to operate in the presence of
incomplete and inconsistent information, with the pos-
sibility of even misleading or malicious pieces of data.

2. The KPlane needs to be able to handle conflicting
or inconsistent high level goals.

3. The KPlane needs to be general and future proof,
i.e., the introduction of new technologies and novel ap-
plications should be possible. Moreover, the environ-
ment in which optimization needs to take place is high-
ly dynamic, where both short and long term changes
are possible in the structure and complexity of the net-
work system.

Such challenges are not uncommon in the research
and applications of the last decades of Artificial Intelli-
gence (Al) literature. In particular, multi-agent systems
(see [21]) are often proposed to handle such challen-
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ges. A multi-agent system (MAS) is a system compo-
sed of multiple interacting intelligent agents, where in-
telligent agents, shortly put, mean autonomous deci-
sion making entities with individual information pro-
cessing capabilities and individual goals. Such agents
can naturally incorporate different viewpoints or goals
in a system and also provide a natural way to embody
components with different levels of data access.

As a consequence, however, the goals and actions
of agents in a multi-agent system may partially be alig-
ned or conflicting. Also, even if conflicts are missing
or resolvable, information may be unevenly distributed
among the agents. Therefore, agents interact and try to
resolve conflicts and collaborate according to various
protocols and methods. A vast body of the recent Al and
MAS literature deals with conflict management, colla-
boration and cooperation, and distributed optimization
in such systems (see [22-24]).

It is worth pointing out that the agent metaphor is a
natural abstraction layer to describe conflicting or in-
consistent goals — independent of the particular pro-
blem at hand. This is also true for matters of trust (cf.,
malicious information). This way, these issues can be
handled by general solution methods and need not be
developed for each particular application domain. In
other words, these challenges of the Knowledge Plane
may be handled by “canned solutions” developed in
other research domains.

Multi-agent systems are often said to provide a so-
lution for the introduction of novel applications as well.
The idea behind this proposal is that if a new applica-
tion or requirement appears, a new agent (or bunch of
new agents) may be introduced to the system at any
point in time. With the general conflict resolution and
collaboration protocols in place, the new goals and re-
quirements represented by the new agents will be se-
amlessly integrated in the system. Similarly, should
some of the goals rendered outdated by time, the sets
of agents can be gracefully eliminated from the multi-
agent system.

Still, in order to proceed towards a decision making
solution in the autonomous networking field, further re-
search is required. Although recent Al-related research
should be exploited in the area of network manage-
ment, currently there are no real-time, scalable solu-
tions available. The canned multi-agent solutions have
not yet broken into the network management field, and
the few prototype systems (e.g. the one described in
[25]) remained prototypes up to now.

Due to the aforementioned limiting factors, a scala-
ble, high-performing, yet less accurate solution is sug-
gested for decision making: rule-based reasoning. It is
used with success in many areas; see [10] as an ex-
ample. In connection with the KPlane, we continue fu-
ture research in the Al-field, and further developments
and integration toward a scalable, rule-based reaso-
ning engine that is applied in a distributed manner thro-
ughout the KPlane.
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6. Conclusions

Network efficiency and service quality are required to
be kept at high standards for both the network opera-
tors’ and the users’ point of view. This can be achieved
by keeping the network and service status under con-
tinuous monitoring. When inefficiencies become evi-
dent, or failures appear, corrective actions should be
orchestrated. A recent concept to cover the autonomo-
us loop of “Monitor-Analyze-Plan-Execute” (MAPE) is to
utilize a Monitor Plane to gather and process informa-
tion, introduce a Knowledge Plane to continuously pro-
cess network and service status according to the re-
quirements, and carry out commands for corrective
actions by Action Plane entities.

In this paper we closely examined the tasks of the
Monitor Plane, and suggested a scalable architecture to
gather and process network traffic in a distributed man-
ner. Since decisions at the Knowledge Plane should be
partially made by traffic information, two important traf-
fic analysis methods have been introduced to support
decision making. Traffic Mix analysis requires a flow-
based approach, where flows get classified into appli-
cation types based on their characteristics, and then
evaluated by related QoS metrics. Traffic Matrix analy-
sis is important for both network and service planning,
since it outputs the traffic volumes and characteristics
correlated with the traffic endpoints. This information
can efficiently support status processing and decision
making at the KPlane, since currently these are the
most sophisticated traffic-related analysis methods that
human experts use during network/ service evaluation
and planning.

The brief review of distributed multi-agent systems
suggests that based on their problem statement, such
systems — when available, — should be able to cover
the requirements of the ideal KPlane. Nevertheless, this
field requires further applied research, since a scala-
ble, high-performing, tangible MAS - that could serve
as a KPlane — is still missing.
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