
1. Introduction

Distributed sensor networks were in the focus of re-
searchers since the early 1990s. There was a trend to
move from centralized, highly reliable, powerful but ex-
pensive platforms to a large number of cheap, decent-
ralized and potentially unreliable components that as a
group are capable of far more complex tasks than any
individual super-node. Wireless sensor networks (WSNs)
are formed by one or more base stations (sinks), where
the collected data is sent, and a large number of sen-
sors distributed over the monitored area and connect-
ed through radio links. Sensors are low-cost and low-
power tiny nodes equipped with limited sensing, com-
puting, and radio communication capabilities. They ty-
pically have irreplaceable power sources, designed for
single usage, and are deployed in an unplanned manner.

There is an essential difference in our terminology,
as compared to the usual one, related to cluster defini-
tion. By cluster we indicate a subset of entities that could
be potentially monitored (e.g., a set of coordinates where
sensors could be placed), and not a subset of sensor
nodes; thus, in our terms, cluster formation mainly de-
pends on the environment and the physical phenome-
na in which we would like to find the redundancy. The
nodes can move over those clusters, which are slowly
changing in time. In order to better understand our mo-
del, we introduce some basic definitions. Let F be a set
of entities that could be potentially monitored. Then, ƒi ∈F
is the i-th cluster, i.e., a subset of F in which each of the
entities can be mutually described based on another
arbitrary entity in the same set, within a user specified
error bound. Thus, we need to sample only one of the en-
tities in the cluster, and then can estimate any other en-
tity in the same set. When cluster ƒi is monitored using
k nodes, we call it k-coverage, where the redundancy

is 1: k ; thus, k–1 nodes can be sent to sleep mode. The
number and the topology of the clusters ƒ depend on
several factors such as the monitored physical pheno-
mena, the environment, or the error bound. The clusters
might also dynamically change in time. If we have two
clusters ƒi and ƒj, and we manage in a way to estimate
any of the entities in ƒi based on the readings of any en-
tity in ƒj, the two abstract clusters will merge.

When ∀ƒi ∈F is monitored by one and only one node
ni, we call the coverage perfect. This can be achieved
only if N ≥|ƒ| where |ƒ| is the number of clusters and N
is the number of nodes. Since the structure of the clus-
ters is unknown, we overdeploy the field F in order to
increase the probability P(∀j ∃i :ni→ƒj), where n_i→ƒj
means that node ni measures one of the entities in clus-
ter ƒj. Therefore, the global lifetime of the network GL
(i.e., the time until ∀j ∃i :ni→ƒj holds) can be easily com-
puted:

(1.1)

where Mj is a set of nodes that measure entities in
cluster ƒj, Mj

i is the i-th node’s index in this cluster, Bi i s
the battery capacity of node ni (in [mA/h]), and C is the
power consumption of a particular node in [mA] (i.e., we
suppose that all of the nodes are similar and have the
same power requirements).

In this paper we propose thus a dynamic sleep sche-
duling protocol that aims at maximizing global network
lifetime while ensuring that all clusters are monitored
by at least one awake node all the time. 

This paper is organized as follows. Section 2 discus-
ses the related work, while in Section 3 we show a short
real-world case study to emphasize the linear associa-
tion between temperature measurements; based on the
described properties, we propose a simple model for
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Energy efficiency in wireless sensor networks is a major issue, since the sensors usually have limited and irreplaceable power
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� FROM OPEN CALL

Adaptive sleep scheduling protocol 
in wireless sensor networks

GERGELY ÖLLÖS, ROLLAND VIDA

Budapest University of Technology and Economics,
Department of Telecommunications and Media Informatics

{ollos, vida}@tmit.bme.hu



the analysis that is done in the next sections. In Sec-
tion 4 we describe and analyze the adaptive regression
method, which is the main component of the Adaptive
Sampling Protocol (ASP) we propose. Then, in Section 5
we present the complete, fully distributed network le-
vel solution. In Section 6 we show the simulation re-
sults, define the deterministic clustering to which we
compare our solution, and investigate the power bal-
ancing capabilities of the protocol. Finally, in Section 7
we conclude the paper.

2. Related work

The early papers on energy efficiency were discussing
fault tolerance [2] or energy-efficient routing [3], but sleep
scheduling, i.e., sparing the energy of the network by
placing a subset of nodes into sleeping mode, is a rela-
tively new approach [4]. It is true that sleep based pro-
tocols are common in wireless networks generally, as
battery energy can be significantly preserved if the mo-
bile device is in sleep mode. However, sleep schedul-
ing in wireless sensor networks is a much more sophis-
ticated problem. Sensors are not standalone devices,
they are responsible together for the monitoring task.
Therefore, a sleep scheduling protocol should enable
sensors to take turns in sleeping and preserve their ener-
gy while ensuring however, that the monitoring quality
is not affected. In the last few years, many papers dis-
cussed a wide range of sleep-scheduling solutions. For
instance [5] discussed localized sleeping algorithms
based on distributed detection for differential surveil-
lance, [4] discussed system issues and focused on pro-
totyping, while [6] focused on the detection of rare events.
However, all of these solutions are based on static, and
not adaptive methods. In this paper we discuss an app-
lication layer approach, as opposed to many other me-
thods and protocols that achieve higher energy eff ic i-
ency operating on lower layers, like the MAC – medium
access control layer [7-9]. Similar ideas to our method
are also explored in [10].

In [11] authors proposed a similar coverage-preserv-
ing node-scheduling scheme which can reduce energy
consumption and therefore increase system lifetime by
turning off some redundant nodes. They presented a ba-
sic model for coverage-based off-duty eligibility rule and
then extended it to several different scenarios. Each
node in the network autonomously and periodically makes
decisions on whether to turn itself on or off, using only
local neighbor information. To preserve sensing cover-
age, a node decides to turn itself off when it discovers
that its neighbors (sponsors) can help in monitoring its
whole working area. To avoid blind points, which may
appear when two neighboring nodes expect each other’s
sponsoring, a backoff-based scheme is introduced to
let each node delay its decision with a random period
of time. This method assumes however that nodes know
their position and sensing range, which in addition is cir-
cular and has the same radius for all nodes. Further, this

method can not fully exploit the linear correlations be-
tween the measurements and it is not able either to ba-
lance the available power levels in the network.

In [12] authors proposed a scheme in which the life-
time of a sensor node is divided into epochs. For each
epoch, the base station computes a minimum set of ac-
tive nodes, based on the current level of coverage re-
quirement, i.e., each sensor samples the field only if it
is chosen by the base station to do so. In [13] the authors’
approach has two phases. The first one is the develop-
ment of models (offline) for predicting the measurements
of one sensor using data from other sensors. The second
is the creation of the maximal number of subgroups of
disjoint nodes so that for each such subgroup the mea-
sured data is sufficient to recover the measurements
of the entire sensor network. For prediction of the sen-
sor measurements, the authors introduced a new opti-
mal non-parametric polynomial time isotonic regression.
To capture the evolving dynamics of the instrumented
environment, they monitor the prediction errors occa-
sionally to trigger adaptation of the models.

These schemes usually assume a static level of co-
verage, but even if adaptivity is ensured, either the pa-
rameters of the adaptive model are computed offline, or
the adaptive algorithm is controlled by a central base
station, or the used model is too restricted. There are
three main disadvantages to an adaptive, but centraliz-
ed approach. First, there is a significant communication
overhead. Second, the response time to dynamic events
might be unacceptably high. Third, if the base station
is temporarily unavailable, the sleep scheduling on the
whole network is disrupted; as a result, the sensor net-
work cannot continue to function efficiently.

Our proposed method differs from existing works,
since the adaptation to dynamic events is online and
continuous; there is no need for dedicated phases, nor
for base station assistance, since the measurements
of sleeping nodes are approximated locally. Also, our
proposed ASP protocol can support mobility, it is fully
distributed, can be gradually enabled on the network,
does not need position information, the model has no
restriction on sensing range and finally it is a robust so-
lution in terms of node failures.

3. Short case study

In this section we will shortly describe the correlation
and statistical properties of temperature and luminosity
samples, in order to support our model.

In a dormitory room we placed five sensors that mea-
sured temperature and luminosity for three days. The
room residents were living their normal daily life with-
out any interruption or alteration. We used identical sen-
sors, deployed as shown by the numbered points in Fig. 1
(left). We can see that node n5 was close to the heater
and to the windows, it had therefore the biggest tempe-
rature interferences. On the same figure we can see the
ceiling fluor lamps and the reading lamps (marked with L)
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as well. We can thus see that node n3 had the largest light
interference caused by a reading lamp. Naturally, the
room residents caused additional interferences. This ar-
rangement ensured real-world measurements. The used
nodes were Crossbow MICA-Z motes [14], running the Tiny
OS [15] operating system with Zigbee stack. Motes were
equipped with an ISM radio transceiver (2.4 GHz IEEE
802.15.4) with a maximum data rate of 250 kbps, and had
4 Kbytes of internal memory. The sensor and data ac-
quisition card plugged into the processor radio board
collected light and temperature measurements with a
one minute sampling rate. In short, we collected tempe-
rature and light samples from five different sensors over
three days, sampled every minute without interruption.

In Fig. 1 (right) we see the correlations between mea-
surements, represented on specific graphs for each pair
of nodes. For instance, let’s take the graph that describ-
es the relations between temperature readings of nodes
n3 (Temp3) and n2 (Temp2). For any given time t there is
a corresponding point on the graph, with the readings on
node n3 represented on the x axis, and the readings of
node n2 on the y axis. As it can be seen, every graph has
its inverse, which does not hold extra information, be-
cause the sub-graphs are symmetric, i.e. [Temp3, Temp2]

is the exact inverse of [Temp2, Temp3]. We can see that
node n2 is well correlated with the measurements of
node n3, because they are close to each other and are
far from the windows. By contrast n3 and n4 are closer to
each other, but n4 is close to the window as well, and it
is thus exposed to significant temperature disturban-
ces (the room residents often ventilated the room). In
our measurements a significant spatial correlation can
be observed, which we exploit (among others) in the
Adaptive Regression procedure our protocol builds on
(details will be given later).

Fig. 2 presents the sampled temperature (the Mote’s
ADC output can be converted to degrees using the Stein-
hart-Hart equation) and luminosity data; superimposed
on the plot is a line joining the first and third quartiles
of the samples. This line is extrapolated out to the ends
of the sample to help evaluate the linearity of the data.
The purpose of a normal probability plot is to graphi-
cally assess whether the data could come from a nor-
mal distribution or not. If the data are normal, the plot will
be linear, while other distribution types will introduce
curvatures in the plot. We can see that our samples app-
roximately follow a normal distribution; thus, we assume
normality of samples originating from short sampling in-
tervals (window size of several minutes).

Since the strong linear correlation in an over-dep-
loyed sensor network is typical, especially when moni-

toring temperature, humidity, light,
etc., we have chosen a simple li-
near regression model. Another
reason is the well known fact that
if the samples are normally dist-
ributed then the relation between
the measurements could only be
linear.

We will generate a number of
artificial samples for two nodes of
different (linear) correlation struc-
ture, in order to observe and com-
pare the adaptation response and
behavior. The first node’s (ni) mea-
surements X ∈N (µ2,σ2) are model-
ed by normal distribution. The sec-
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Figure 1.
Deployment (left)

and internode
correlation (right)

Figure 2. 
Two typical normal probabil i ty plots of temperature and 
luminosi ty samples



ond node’s  (nj) measurements Y are modeled through a
linear relation, as follows. Let Z ∈N (µ1, σ1) then:

(3.1)

where a,b are the parameters that affect the linear re-
lation, while k affects the strength of the relation between
X and Y. If (3.1) is true then:

(3.2)

The α and β parameters of the linear regression (Y ≈
αX + β) are as follows:

(3.3)

(3.4)

Further the Pearson product-moment correlation co-
efficient for this model is:

(3.5)

This coefficient is zero (no relationship) if k=1 and
there is an exact linear relationship (Y =aX + b) if k=0:

(3.6)

(3.7)

This model will be assumed throughout the analyti-
cal evaluations of the proposed protocol (or for sample
generation during simulations if not stated differently).

4. The adaptive regression method

In this section we describe the main component of our
Adaptive Sampling Protocol (ASP), the adaptive regres-
sion (AR) method. This method is used to track other

nodes in the network and interpolate the measurements
of those nodes if needed. Thus, the AR method deals on-
ly with two nodes: the local node that executes the AR
method and a distant node being tracked by the local
node. 

The adaptation, i.e., the adaptive regression method
is simple. The main idea is as follows. In each iteration
(when a sample arrives from the distant node) the local
node samples the environment as well and pushes the
sample pair (local and distant measurement) into a sam-
ple FIFO buffer. We use this buffer for estimating the li-
near regression parameters and the expected error. For
each monitored neighboring node, the local node has
separate FIFO buffers, and each newly received distant
sample is pushed into the proper buffer, along with the
latest local measurement. Then, the node recalculates
the parameters of the linear regression when needed. 

The length of the FIFO in an ideal situation is 2 since
this is enough to determine the linear relation. However,
in real world measurements there is a significant noise;
therefore, we need to have more than two samples (typi-
cally 10-30). The optimal number depends on the amount
of noise present (lower bound) and on how fast the cor-
relation structure changes (upper bound). Basically, the
length of the FIFO should be determined empirically;
however, a 20 unit long FIFO is a good trade-off between
correlation detection time and noise immunity in most ca-
ses regarding temperature or humidity measurements. 

The method can dynamically determine if two diffe-
rent clusters fi and fj can be merged together (if there is
a strong linear relation), switch off the redundant node
and therefore prolong the global lifetime GL of the net-
work. In the beginning, we assume that ∀j ∃!i :ni→ƒj; the
coverage is perfect, N ≥ |ƒ| is satisfied. Let x [t ] be a sam-
ple from one of the entities in cluster ƒi (a realization of
X), sampled by node ni at moment t. Similarly, let y [t ] be
a sample from one of the entities in cluster ƒj  (a reali-
zation of Y), sampled by node nj at the same moment.
Two clusters ƒi and ƒj can be merged at moment tk, for a
period tp, if ∃a [tk ],b [tk ] so that:

(4.1)

where Uerr is the user specified mean square error
(MSE). Naturally, we have to know the MSE of our model
before we send nodes ni or nj to sleep mode for a time
interval tp. We continuously estimate the mean square
error of our model, and if (4.1) is satisfied, we presume
that the process is stationary for another time interval
tp. Then, we send one of the nodes to sleep mode for tp,
while the awaken node will regress the sleeping node’s
measurements (based on the estimated regression line)
and send them to the sink, on behalf of the sleeping
node. The parameter estimation in case of linear re-
gression [16,17] is well known, so we only summarize
the equations. 

Let {x [t k],y [t k]},{x [t k+1],y [t k+1]},..., {x [t k+t p],y [t k+t p]}
be the discrete samples from clusters ƒi and ƒj, sampled
by nodes ni and nj.
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If
(4.2)

and

(4.3)

the sum specified in (4.1) will be minimal; thus, the li-
near model is optimally set. In our algorithm we are con-
tinuously pushing the [x ,y] pairs to a FIFO queue, and
with each new learning pair we update the latest a, b,
ainv, binv parameters. For all of the monitored clusters ƒ,
node ni can have separate and independent FIFO que-
ues (as in the ASP protocol described later).

The sum specified in (4.1) is the estimation of the
expected error. For simplicity let {x [t k], y [t k]},{x [t k+1],
y [t k+1]},..., {x [t k+t p ],y [t k+t p ] } be the discrete samples
from clusters ƒi and ƒj, sampled by nodes ni and nj.

(4.4)

Lemma 1: If (4.2) and (4.3) is true then

(4.5)
Proof:

The expected error calculated by the adaptive reg-
ression method is:

(4.7)

As we pointed out earlier, if the expected error is low-
er than the error specified by the user, one of the nodes
goes to sleep mode, depending on which node has less
energy remaining; this will ensure proper power balanc-
ing, which extends the GL (1.1) global lifetime of the net-
work.

5. The Adaptive Sampling Protocol

Each sensor node that executes the Adaptive Sampl-
ing Protocol (ASP) operates in three phases: adaptation,
bargaining, and interpolation. Moreover, the bargaining
phase has three steps: interpolation request, interpola-
tion response, and election. The protocol is composed of
(and can be well described by) three distinct extended
finite state machine (EFSM) models. However, because of
space limitations, we focus only on the overall behavior
of the ASP protocol. Our solution exploits a potential
that we pointed out in Section 3, namely that the nodes
close to each other are usually well correlated. We also
assume that these close by nodes can hear each other
as well.

In Fig. 3.1 we can see the adaptation phase. We will
focus on node X and its neighboring nodes Yn. Each
node in the adaptation phase grabs packets from its
surroundings. In this example nodes Y1, Y2, Y3 can re-
ceive the packets transmitted by node X node and exe-
cute a copy of the adaptive regression method for node
X. On the other hand, let’s say that node Z receives
the packets as well, but it does not monitor node X,
since it does not have enough resources (the maximum
number of monitored nodes has been already reach-
ed). The unlabeled nodes can’t receive the packets of
node X, since they are too far away. With each new sam-
ple that X sends to the base station, the Y nodes adapt
their model as described in the previous sections.

In Fig. 3.2 we can see the interpolation request step
of the bargaining phase. In order to decrease the com-
munication overhead, the interpolation request is imp-
licit; it is thus embedded into the packet which carries
the latest measurement. The nodes are sending inter-
polation requests by uniform distribution. The probabi-
lity of sending the request could be increased based
on the available power levels, gradually enabling there-
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fore the sleep scheduling in the network. Since the in-
terpolation request is included in a packet that carries
the samples, only those nodes can hear the request which
have heard the samples and potentially adapted their mo-
del to node X. An interpolation request does not gener-
ate any unnecessary overhead (since it is embedded),
because if some node replies to it, an interpolation phase
will certainly follow (i.e., one of the nodes will certainly
sleep). 

Since the energy spared during sleeping is much
more than the energy spent for replying the request (ma-
ximum each neighbor can send one single reply, where
the number of neighbors is typically below five to ten),
increasing the probability to send a request results in
more energy savings. When this probability is 1 (const-
antly sending the request), then the ASP protocol spares
as much energy as the user specified quality threshold
and the correlation structure of the measurements per-
mits.

In Fig. 3.3 we can see the interpolation response step
of the bargaining phase. Only those nodes (from the vi-
cinity of node X) answer the interpolation request whose
model’s expected quality of regression is below the us-
er specified threshold of expected quality Teq. Here we
extended the adaptive regression method with a quality
definition. The expected quality is a weighted sum of the
expected error (as described in Section 4) and the aver-
age age of the sample pairs in the sample FIFO queue,
based on which we calculate the parameters of the li-
near regression. In distributed environments this exten-
sion is necessary since we have more than two nodes
in the network and they can constantly move as well. It
can easily happen that the monitored node X moves out
of the receiving range of nodes Yn, and then it moves
back after a while; this would cause the samples to be
fragmented in time in the sample buffer of nodes Yn. In
other words, the samples in the FIFO queue will either
be too old or current ones, but nothing between them;
the samples will not be uniformly distributed, which dis-
torts the regression. We can detect and control the ef-
fects of this distortion since the average age of the sam-
ples is increasing with the dispersion of the age of sample
pairs. 

In this example, let say that the dispersion of the age
of sample pairs in the buffer of node Y1 is too high; thus,
the expected quality of regression is high as well, which
results in node Y1 not answering the request of node X.
Please note that the expected quality metric is inverted
(the lower the expected quality, the better the extrapo-
lation). Since node Z did not monitor the measurements
of node X, it does not answer the request either. Nodes
Y2 and Y3 answer the implicit interpolation request of
node X with an interpolation response that carries the
particular node’s actual power level and its inverse reg-
ression parameters.

In Fig. 3.4 we can see the election step of the bar-
gaining phase. After node X received the actual power
level and inverse regression parameters, of the candi-
date nodes (Y), it selects the node with the minimal po-

wer level (in our example Y2). At this point, we determin-
ed which pair to involve in the regression phase. How-
ever, node X has also to decide which of the two nodes
(X or Y2) will go to sleep. The decision is simple: the node
with less energy remaining. After the decisions, node
X informs the winner candidate, and the selected node
goes to sleep mode for a predetermined time interval Tp.

In Fig. 3.5 we can see the interpolation phase. In our
example node Y2 goes to sleep for a predetermined in-
terval Tp, and during that period node X interpolates its
samples and sends them to the base station on behalf
of node Y2. In order to interpolate the measurements of
node Y2, node X uses the inverse regression parame-
ters that Y2 has sent in the interpolation response step
of the bargaining phase. Nodes X and Y2 are in interpo-
lation and sleeping mode, respectively. During this state,
sleep request from other nodes (in this example nodes
A and B) are ignored.

Since the protocol is soft state and fully distributed,
it can handle frequent node failures as well. If a node
fails during the adaptation or interpolation phase, this is
equivalent with the situation when the failed node doesn’t
have a good model for interpolating the requesting node’s
measurements (i.e., it does not answer the request in any
way). If a node fails in any other phase, the worst case
scenario (when the node doing the interpolation fails)
is that for a single Tp time interval (which is measured in
seconds) we lose the measurements of that cluster (two
nodes). After that, the protocol naturally recovers from
the failure through the next interpolation request.

The ASP protocol takes into account node power le-
vels, in order to ensure proper power balancing, as well
as the expected quality of the interpolation. Since the ex-
pected quality, as a statistical measure, is much less re-
liable, and the power balancing is an important task (to
extend the global lifetime of the network), the protocol
ensures the node that goes to sleep is always the one
which has the less energy remaining, in the vicinity of
node X (including node X itself). In the same time, only
those nodes will answer the interpolation request of node
X for which the expected quality (composed of expect-
ed error, as described earlier, and the average age of
the samples in the buffer) is less than a user specified
expected quality bound. This allows us to influence the
interpolation error. Furthermore, the sleep scheduling
protocol can be gradually enabled on the network, as de-
scribed earlier.

In the ASP the expected quality of the regression is
calculated as a weighted sum of the expected error and
the average age of the samples. Since the expected er-
ror is not symmetric, we have to calculate the expected
quality on both sides of the regression. The average age
of samples is symmetric, since we are calculating the
average age of learning points from the same buffer, for
each side. The symmetry of the average age of samples
is straightforward; however, the asymmetry of the ex-
pected error needs a minor explanation.

Lemma 2: If the standard deviations of the measure-
ments of two nodes X,Y are finite, nonzero, different, and
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the Pearson product-moment correlation coefficient is
not ±1, then the expected error (as we defined it in Sec-
tion 3) is not symmetric (which is usually the case):

(5.1)
Proof:

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

This is the reason why we need to send the ainv and
binv parameters in the interpolation response phase along
with the battery status.

6. Simulation results

In this section we analyze and compare the Adaptive
Sampling Protocol with the deterministic clustering app-
roach. First we discuss the sample generation process
and its statistical properties. Then, we introduce the re-
ference model to which we compare the proposed me-
thod throughout this paper. We provide then performance
and overhead analysis, and finally we discuss the po-
wer balancing property of our protocol, which significant-
ly extends network lifetime.

A) Sample generation and analysis
We measured the properties of the samples in the

following manner. First we generated 25x10000 sam-
ples for 25 nodes (for each node 10000 samples). The
sampling frequency of the nodes was 1Hz and they were
able to execute 100 logical operations in 1 second (100
state transitions per second in the EFSMs). Thus, for 100
seconds of simulation time, we needed 100x100=10000
samples, where each sample represents 10 ms holdup
in time. The typical sample’s buffer length was 20, there
was thus a 20-entries long FIFO in which we shifted the
samples (pushed one to the top, and discarded one from
the bottom of the FIFO, in each second), while we conti-
nuously computed the statistical properties of the sam-
ples in the FIFO. We have randomly chosen two nodes,
and plotted the result in Fig. 4 as illustration.

As we can see, the covariance, the dispersion and
the expected error on both nodes are continuously chang-
ing (as we discussed in Section 3). The range and pro-
file of the curves are similar between each pair of mea-
surements, but the maximum and the inflection points
are differently situated. What is typical for each pair is
the decreasing determination index (or coefficient). The
reason why we generated such samples needs a short
explanation. The variation of the samples is made up of

two parts: the part that can be explained by the regres-
sion equation (this is the determination index) and the
part that can’t be explained by the regression. The de-
termination index can have many different definitions,
depending on the class of problem. In our case (linear
regression) the determination index (or coefficient) is ex-
actly the square of the Pearson product-moment corre-
lation coefficient.

According to Lemma 1 and the definition of the ex-
pected error (in Section 4):

(6.1)

Since the regression function ƒ(X) in our case is li-
near ƒ(X) = aX +b: 

Therefore, if the determination index is 1, there is no
introduced error by the adaptive regression (there is an
exact linear relation between the measurements of the lo-
cal and the distant node). As the determination index is
decreasing the performance of the adaptive regression
(AR) is declining as well. If the determination index is zero
then the linear regression can’t explain the variance of
the extrapolated node by definition. If the samples are
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normally distributed (as we presumed and demonst-
rated in our scenario) they are independent as well.

B) Deterministic clustering
The deterministic clustering approach is (implicitly)

widely used in existing sleep scheduling protocols. The
main idea is that if we form the clusters in an overde-
ployed network based on topological distances (the nodes
that are close to each other form a cluster), then with the
measurements of one node we can approximate the ot-
her nodes in the same cluster (they are measuring app-
roximately the same values, as discussed in Section 3).
We select a cluster head which measures the environ-
ment, and the rest of the nodes are going to sleep mode
until the cycle ends. In each cycle a new node (from the
same cluster) assumes the role of the cluster head, this
node being chosen in a deterministic or probabilistic
manner. These protocols are however unaware of the
current measurements, and the clustering is static; they
do not support dynamic environments, where the cor-
relations between nodes are changing.

Our reference model (referred as deterministic clus-
tering) is as follows. We divide the network into two-node
clusters (if there is an odd number of nodes, then the last
cluster consists of three nodes) in order to be compar-
able with the ASP protocol which dynamically creates
two-node clusters as well. In each cluster one of the nodes
is always sleeping, while the awaken node samples the
environment and sends the measurement to the sink
on behalf of both nodes. In each cycle (sampling period)
the nodes assume reverse roles, in order to sustain the
network’s power dispersion. The error that this model
makes is the squared measurement difference between
the measurements of the awake and the sleeping node.
If we compute the average error in the network for each
cluster, we get the mean squared error (MSE) of the de-
terministic clustering in a given cycle.

In Fig. 5 we can see the comparison between the
MSE obtained for the deterministic clustering protocol
(not aware of measurements) and for the Adaptive Sampl-
ing Protocol, which is aware of the measurements and
the correlation structure. The reason for the high MSE
values between seconds 10 and 40 is that the dispersion
of the measurements between the samples is higher (due
for example to node or event mobility). After 60 seconds
of simulation, the dispersion is significantly smaller,

which means that the nodes are measuring similar val-
ues (that’s why the blind deterministic clustering per-
forms so well). As you can see, the ASP protocol can
adapt to dynamic environments. In the rest of the ana-
lysis we will usually compute the average MSE of the
protocol per simulation run. In this case, for 80 seconds
of simulation (one run) the average error made by ASP
is approximately 27, while the average error made by the
deterministic clustering scheme is approximately 103.

C) Performance of the ASP protocol and comparisons
In this section we compare and analyze the Adap-

tive Sampling Protocol. First we provide a parameter sen-
sitivity analysis for the length of the sample buffer and
the user specified threshold of expected quality; then,
we also discuss the protocol’s overhead.

In Fig. 6 we can see the protocol’s behavior if we
change the length of the sample FIFO (queue) buffer, as
well as its effect on the protocol overhead. As it can be
expected, if we increase the size of the sample buffer,
the response time of the ASP protocol (for correlation
changes) increases. In other words, if the correlation
structure between two monitored nodes changes (rela-
tively) quickly, the expected quality will not decrease
below the user specified threshold (TEq) so rapidly; there-
fore, the interpolation request will be rejected and there
will be thus less sleep cycles (in general), as the figure
shows. The protocol’s overhead is measured in the num-
ber of extra packets sent, which is strongly correlated
with the number of sleep cycles. In order to avoid redun-
dancy, we will discuss this issue in detail later.

If the number of sleep cycles is decreasing then na-
turally the power consumption is increasing. Fig. 7 shows
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Figure 5.  Deterministic clustering versus ASP

Figure 6.  
Sample buffer size sensit ivi ty (sleep cycles)

Figure 7.  
Sample buffer size sensit ivity (power consumption)



the average power consumption per node, for both the
ASP protocol and the deterministic clustering. We simu-
lated both protocols with the following parameters: there
were 25 nodes in the network (5x5 grid), the simulation
time was 1000 seconds, and the speed of the EFSMs was
100 ticks/sec. For a sleeping node we chose the power
consumption to be 0.001 units/tick and for the awake node
0.01 units/tick. Given the parameters, it is easy to com-
pute the average power consumption of a node for the

deterministic clustering: it is 550 units in this scenario
(550 = 500*100*0.01 + 500*100*0.001) since each node
is sleeping in half of the time. Given that the determin-
istic clustering has no sample FIFO, this consumption
is independent of the FIFO length; that’s why in the fig-
ure it appears as a straight line. If we increase the length
of the samples FIFO, the adaptation to correlation changes
is slowing down; many of the old samples are still in the
FIFO, they overweight the new samples, and thus the pro-
tocol can’t exploit short term correlations. This means
that the number of sleep cycles is decreasing (as we can
see in Fig. 7) and, therefore the power consumption is
slightly increasing.

In Fig. 8 we can see that if we increment the user spe-
cified threshold of expected quality, the extrapolation er-
ror is increasing as well. The simulation configuration is
as we described earlier. There are 25 nodes (in a 5x5
grid arrangement) in the network, and they are not mov-
ing. The samples that are fed to the network are as we
described in Section 6/A. Each node can track 8 nodes
and in the 5x5 grid each node has maximum 8 neighbors.
The simulation time is 1000 seconds and the sample buf-
fer length is 15. Like in the previous comparison, in this
static environment the ASP protocol outperforms the de-
terministic clustering roughly 3-4 times regarding the
estimation error. Please note that the samples between
nodes are virtually not correlated in 30% of the simula-
tion time, given that the typical determination index is
decreasing (as we discussed in Section 6/A.).

As we mentioned it earlier, the blind deterministic
clustering scheme results in the theoretically minimal
energy consumption. Fig. 9 indicates how much does the
power consumption of the ASP converge to this mini-
mum. However, as the power consumption is decreas-
ing, the extrapolation error is increasing (Fig. 8).

In Fig. 10 we can see the average number of sleep
cycles per node and the average number of sent messa-
ges per node, as we change the TEq (threshold of expect-
ed quality) parameter. As we pointed it out earlier, if the
TEq parameter increases, the number of sleep cycles in-
creases as well, and thus the power consumption de-
creases. Before each sleep cycle, there is a three step
negotiation, with the first step (interpolation request) be-
ing implicit (carried in the packet along with the sample).
The remaining two steps result in overhead packets, the
average overhead per node (in sent packets) is there-
fore strongly correlated with the number of sleep cycles,
and is increasing as the TEq parameter is increasing. The
number of overhead packets is approximately equal to the
number of sleep cycles times two; however, this relation
is strongly varying from node to node, although in average
(per node) this is a close estimation, as shown in Fig. 10.

This overhead could slightly increase if the neigh-
borhood of nodes is dense, since in this case more nodes
can apply for the competition (send an interpolation re-
sponse). The increase in node density means that a node
will probably have more neighbors. Since the number of
nodes that a particular node can track has a fixed upper
bound, the number of answers to interpolation requests
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Figure 8.  TEq sensit ivity analysis (estimation error)

Figure 9.  TEq sensit ivity analysis (power consumption)

Figure 10.  TEq sensit ivi ty analysis (sleep cycles)

Figure 11.  Power dispersion comparison



in the network has an upper bound as well. When we si-
mulated the network’s behavior, we have set this para-
meter to be equal to the number of neighbors, maximiz-
ing thus the overhead in the described scenario. This
means that if the density of nodes increases with the
number of interpolation requests remaining constant, the
overhead will not be significantly higher. Of course, this
could increase the radio interference on the MAC layer,
but because of the distributed nature of the protocol this
would not affect significantly the overall behavior of the
ASP protocol.

D) Power balancing
In this section we discuss the power balancing ca-

pabilities of the Adaptive Sampling Protocol.
In Fig. 11 we can see the comparison of power bal-

ancing capabilities of the ASP and the deterministic clus-
tering. The deterministic functioning of the cluster bas-
ed approaches assures the detection time of events.
This capability usually infers the constant power dis-
persion in the network through time, which could signi-
ficantly decrease the global lifetime of the network. As
we can see in Fig. 11 the ASP balances the energy re-
serves of the network, and increases thus the global life-
time of the network (1.1).

Fig. 12 is a snapshot of energy reserves in the net-
work in the first second of the simulation time. As we
mentioned it earlier, the nodes were arranged into a 5x5
grid. During this simulation, each node could monitor
maximum 4 nodes and each node had maximum 4 neigh-
bors. The user specified threshold of expected quality
was 0.15, the samples buffer size was 20, and the initial
power dispersion was random (uniform distribution). As
we compare the snapshot from the first second with the
energy snapshot after 45 seconds (Fig. 13) of simulation
time, we can see that the nodes with higher energy re-
serves consume more energy than the others.

In other words, the ASP has the ability to logically trans-
fer energy reserves between nodes so as to extend the
global lifetime GL (1.1) of the network.

7. Conclusion

This paper proposes the Adaptive Sampling Protocol, a
fully distributed WSN protocol. Some of the applications
of the proposed method are target tracking, environmen-
tal monitoring, surveillance, early warning systems, etc.

In ASP the nodes in the network are monitoring each
other’s measurements, dynamically learn the linear re-
lations among them (if any), eliminate (send to sleep) the
redundant nodes, and estimate the deficient data with-
out the need for offline pre-computations, dedicated phas-
es, or base station assistance. There is no need for time
synchronization or localization. The algorithm is based
on continuous correlation monitoring and estimation,
where the extrapolation error can be influenced by a user
specified threshold of expected quality. The ASP proto-
col can be gradually enabled on the network, i.e., from
a deterministic functioning, when the detection time is
guaranteed, to the fully adaptive mode, when ASP spares
as much energy as the correlation patterns and the user
specified threshold permit. Another advantage of the ASP
protocol is the strong energy balancing capability which
could significantly extend the lifetime of the network. 

The ASP protocol is designed to support adaptive en-
vironments and as the survey [1] indicates, it’s a first of
its kind. ASP is a robust protocol and can function even
if the network has broken up to isolated segments; it
can easily cope with frequent node failures as well. Fur-
ther, the protocol overhead is well correlated with the
number of sleep cycles, which can be influenced by the
TEq parameter (as simulations showed). Since the com-
munication is local, the power requirements for the over-
head frames are minimal. Also, there are no network level
interferences introduced, as opposed to the base sta-
tion centralized approaches. If the measurements are not
correlated, then the ASP protocol switches back to de-
terministic mode, but only on that part of the network where
the linear association is under the threshold. The disad-
vantage of our protocol is that the power consumption
only converges to the theoretical minimum, but never reach-
es it. Further, one node can monitor multiple distant nodes
but can interpolate only one at a time. This means that
the protocol can dynamically create only two sized clus-
ters and thus the energy spared is limited to 50%.

The main component of the ASP protocol is the adap-
tive regression core, which we first discussed separate-
l y. We supported our assumptions with a short case study,
discussed the properties of the measurements and bas-
ed on this knowledge, we generated the samples for si-
mulations. The results show that the ASP protocol gene-
rally outperforms the clustering approaches and it con-
verges to the theoretically minimal energy consumption.
We showed that the power balancing capabilities of the
ASP protocol are strong. Furthermore, we showed that
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Figure 12.  Network power level status in the first second

Figure 13.  Network power level status after 45 seconds



with the user specified threshold of expected quality, the
real estimation error can be well influenced. 

In the future we will work on a distributed model which
can predict various occurrences of discrete events in
dynamic environments, based on a fully distributed (neu-
ro) Fuzzy architecture.
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