
1. Introduction

Session Initiation Protocol (SIP) is a controlling proto-
col for initiating, managing and terminating IP-based
multimedia services across packet networks. In addi-
tion to being the controlling protocol between different
nodes in IP Multimedia Subsystem (IMS) network, SIP
provides building blocks for new media-blending appli-
cations and is used for enterprise multimedia applica-
tions, multimedia sessions, instant messaging and gam-
ing.

SIP is standardized by the Internet Engineering Task
Force (IETF), and has been adopted by 3rd Generation
Partnership Project (3GPP) and 3rd Generation Partner-
ship Project 2 (3GPP2) for IMS. An example of the SIP
infrastructure is shown in the Fig. 1.

We assume the reader to be familiar with SIP, and
present here some SIP characteristics only to pinpoint
important elements during SIP messages processing.

1.1 SIP characteristics
SIP is an application-layer signaling protocol that

can initiate, modify, and terminate interactive multime-
dia sessions over IP between intelligent terminals. It
shares lots of the features that made the HyperText Trans-
fer protocol (HTTP) a success: it is a clear text client/
server protocol using Uniform Resource Locators (URL)
for addressing. SIP goes beyond the scope of Voice
over IP (VoIP) to provide building blocks for new enter-
prise communication applications:

1. Powerful addressing schemes (URLs) for user-cent-
r ic services.

2. Features and media negotiation for improved plug-
and-play, easily upgraded media-blending applications
and terminals.

3. Seamless integration with existing enterprise IP net-
works and applications: integration with network Domain
Name Servers (DNS) and with the corporate directory us-
ing the Lightweight Directory Access Protocol (LDAP).

24 VOLUME LXV. • 2010/III

Keywords: autonomic computing, self-healing, SIP, nature inspired computing

The performance characteristics of Session Initiation Protocol (SIP) servers determine user-perceived quality of the services
supported by SIP networks. SIP servers therefore must be able to provide service with appropriate reliability.
We present the self-healing SIP model capable of recognizing and restarting failed SIP services without losing active SIP dialogs.
Novel approach to an evaluation of the SIP server healthiness has been presented that enables rapid problem detection and
consequently quick recovery. Tests show that a proposed model exhibits very promising results with respect to number of
successful SIP requests during SIP server operation.

� SPECIAL ISSUE

Nature inspired self-healing model
for SIP-based services

ZORAN RUSINOVIC

Ericsson Nikola Tesla, Zagreb, Croatia
zoran.rusinovic@ericsson.com

NIKOLA BOGUNOVIC
Faculty of Computing and Electrical Engineering, University of Zagreb, Croatia

nikola.bogunovic@fer.hr

Figure 1.
Example of SIP signal ing

through proxy.
User Agent (UA) Server is

a SIP serv ice server

4. Built-in extensibility to other information technolo-
gies used in enterprises: e-mail, documents transported
as Multipurpose Internet Mail Extension (MIME) attach-
ments, etc.

5. Subscription/notification mechanism suitable for
transporting user presence and terminal information.

In Fig. 1 User Agent Client A (UAC A) tries to set up
a session with User Agent Server B (UAS B) using SIP.
It can be seen that SIP signaling and the multimedia
data are completely separated, as SIP protocol is used
only to set up or tear down multimedia session. As a
result of the separation of SIP signaling traffic and the
associated multimedia data stream it might happen that
multimedia stream isn’t available simply because of
the problem with SIP stack and consequently with SIP
session establishment, leading to data being unavail-
able. This will happen even in cases when the data for
multimedia services itself is available at the (possibly
different) service-providing servers, but because of the
SIP signaling problems no connection can be established.

In Fig. 1 this would correspond to the SIP signaling
path (marked with full line) between SIP Proxy A and
SIP Proxy B being broken and multimedia stream path
(marked with broken line) between UA Client A and UA
Server B being fine. Although UA Server B itself works
fine and despite the fact that no problems exist for pro-
viding multimedia stream, as a result of the SIP s ig-
naling problems no connection can be established and
no service can be provided. This leads to a decreased
user-perceived quality or even failure of possibly criti-
cal services.

2. Self-healing model for
a single network element

When problems occur, traditional approaches for trou-
bleshooting are based on the knowledge and experi-
ence of system administrators to discover problems and
find ways to correct them. Unfortunately that approach,
in addition to being laborious, is time-consuming and
can lead to the SIP service being unavailable for a long
period of time.

Self-healing is the property
of any device or system to re-
cognize that it is not operating
correctly and to make any ne-
cessary adjustment needed to
restore itself to normal opera-
tion. In a previous paper [2] the
authors discussed the SIP ser-
vice self-recovery model based
on the monitoring of SIP mes-
sages exchange between SIP
agents that was focused on the
ability to efficiently utilize self-
healing environment for SIP-
based services within a single
SIP network element. This ar-

t ic le extends that work in such a way that it addresses
cross-server healing between multiple network elements
in the SIP-based networks. Together with the self-pro-
tecting SIP stack capability described in [4] we believe
this to be a step towards an autonomic environment for
SIP-based services.

Our approach is based on the heartbeat monitoring
with a purpose to detect whether monitored services
are working or not. Heartbeat monitoring is an app-
roach that can be seen as type of environment aware-
ness since it provides awareness about the health sta-
tus of system parts [5]. When the SIP Service fails, its
peer SIP User Agent (i.e. peer SIP node) will detect this
by expiration of timers defined as the part of SIP pro-
tocol, however for the failed service to continue its
operation local monitor is needed that can detect that
the SIP service has failed and that will try to restart it.
The following sections will describe self-healing model
based on the Windows Server 2008 operating system,
but most conclusions therein can be applied to other
operating systems as well.

2.1 SIP Service Monitor (SSM)
Fig. 2 depicts high-level relationships among the

framework’s main components. SIP services Monitor
(SSM) is the component that implements monitoring and
recovering for SIP services. If the service is recogni-
zed as failed it can be terminated and restarted. In the
Windows environment the common approach to detect
if the application is blocked is to send WM_NULL mes-
sage to the suspected application by using the API call
SendMessageTimeout().

The WM_NULL message performs no operations, and
the recipient will ignore this message, however if the
target application is non responsive the API call Ter-
m inateProcess() can be used to kill the hung instance
of the application. This method is used, for example by
the Windows Task Manager to recognize not responding
applications and is also used as a base for some auto-

Nature inspired self-healing model...

VOLUME LXV. • 2010/III 25

Figure 2.
Relationships among the main components of

the SIP self-healing model

nomic self-healing tools frameworks [6]. There are, how-
ever, few problems with this approach that makes it in-
applicable for SIP self-healing framework (as well as for
many other cases).

In Windows environment there are two kinds of threads:
1. User interface threads that create its window

(which can be invisible) and have GetMessage()
loop which is used to respond to user actions.

2. Worker threads which do not create its own
window and are used to do a compute intensive
job in the background.

Windows applications usually have a single thread
used for all user interface components which creates
one or more worker threads. User interface thread typi-
cally runs with higher priority than worker threads, so
that user interface is responsive to the user while the
working thread is doing a background job. Typical ex-
ample for this are SIP applications which usually cre-
ate a worker thread for parsing SIP messages and run-
ning SIP protocol state machines in the background dur-
ing the times when there is no user input. Being a pre-
emptive OS, upon reception of the WM_NULL message
Windows will suspend the lower-priority worker thread
(if still running) and assign the CPU to the higher-priori-
ty user interface thread that responds to SendMessage
Timeout(). For those reasons if it happens that SIP mes-
sage parsing or state machine handling fails, using the
above described approach, SIP application will appear
healthy despite the fact that there is a problem with SIP
protocol handling thread, and that the only healthy part
of an application is an user interface.

Another problem lies in the fact that this method is
not applicable to applications running as Windows ser-
vices which by default don’t have message loops and
run in different desktop. This is because services run
in their own security context and not the
context of the user that is logged in. There-
fore services also run in their own virtu-
al desktop which means that they can-
not display any blocking user interface
nor can they interact with the user (since
normally hooks are only global within a
single desktop).

In this work we propose another app-
roach based on monitoring applications
ability to process SIP protocol messa-
ges. In addition to avoiding all the prob-
lems related to the first method, this app-
roach can monitor changes in process-
ing times of messages and reflect more
accurately applications behavior and its
health.

2.2 SIP flow monitoring in SSM
With the introduction of the new net-

working stack in Windows Vista and Win-
dows Server 2008 with a single trans-
port and framing layer, a new API known
as a Windows filtering Platform (WFP) has

been introduced. WFP allows, among others, to filter and
modify packets, monitor and authorize connections at
different layers in TCP/IP processing path.

By providing a simpler development platform, WFP
is designed to replace previous packet filtering tech-
nologies such as Transport Driver Interface (TDI) filters,
Network Driver Interface Specification (NDIS) filters, and
Winsock Layered Service Providers (LSP).

As seen in Fig. 3 on the incoming side all packets
arriving at SIP port are monitored on the Stream Layer
in the packet processing path using management API
functions (FWPM) for the managing of the filter engine
(FWPM_LAYER_STREAM_V4 and FWPM_LAYER_
INBOUND_TRANSPORT_V4 for TCP and UDP respecti-
vely). Upon the reception of the SIP message a WFP call-
out function is called which determines if the received
message is a request or a response (callout functions
provide functionalities that extend the capabilities of
the WFP, and can be registered at any layer). If a mes-
sage does not begin with “SIP/” prefix, then the mes-
sage is assumed to be a request which (even if incor-
rect one) requires a final response. SSM can operate in
two modes, each providing different levels of recovery.
In the basic mode WFP is used to monitor outgoing SIP
traffic. When there is no outgoing traffic for a predefin-
ed minimum time period, SSM will use WFP to inject a
testing SIP INVITE message on receive path, consist-
ing only of mandatory headers excluding Call-Id head-
er. If SIP UA server is responsive it should reply with
“400 Bad Request” response, which will be caught by
SSM at the SIP UA server’s outgoing queue.

To monitor health of the SIP UA server more thor-
oughly, processing times of the injected messages can

INFOCOMMUNICATIONS JOURNAL

26 VOLUME LXV. • 2010/III

Figure 3.
SSM operates on the WFP Stream layer

be stored and compared (since processing time should
be in a microsecond range this can be done using time-
stamp counter in a CPU). If despite this testing SIP IN-
VITE message being injected no outgoing SIP message
is generated from the SIP UA server, SSM will conclude
that server has failed and will try to restart it. Otherwise
SIP UA server is assumed to work correctly, and the
generated response is simply dropped in SSM.

In the advance mode in addition to the basic opera-
tion, each incoming SIP messages are cloned into the
SSM Message Buffer (SMB) together with the hash va-
lue of the corresponding dialog as seen in Fig. 4. Dur-
ing the SIP UA server restart SSM is used to listen on
the server’s socket and to store all incoming requests
into the SMB. Dialog hash value (to be used for com-
paring dialogs by numbers) is calculated using the 64-
bit FNV1 algorithm using Call-Id value, remote tag and
local tag of the SIP request as an input. Since initial
INVITE messages do not have remote tag (which is pro-
vided by the SIP UA server itself in the response) the
hash value of such request is calculated after the re-
sponse has been generated. SIP requests are held in the
SMB for the whole duration of the dialog, and are delet-
ed from there only after the final response on BYE re-
quest has been sent by the SIP UA server. If sometime
during the operation SSM detects problems with SIP UA
server, in addition to restarting the server, SIP messa-
ges from SMB are used to re-initialize the dialog and
transaction states of the server into states server had
before restart. During this re-initialization phase initial
INVITE requests from SMB are injected into the incom-
ing buffer. Callout function is used to detect the new lo-
cal tag value from the first non-100 provisional respon-
se generated by the SIP UA server. If it differs from the
old one (from the pre-restart phase), all other SIP re-
quests of the same dialog are injected into the incom-
ing buffer with this new local tag. In addition to this, all
responses to injected requests are dropped by SSM, to
prevent SIP UAC receiving responses to old requests.

Reason behind this is that remote SIP UAC will have
dialog state machines driven by old tag values and the
local SIP UA server has them driven by new local tag
values. Therefore it is necessary to make an appropri-
ate mapping for all new SIP requests.

During the advance mode of operation prior to buf-
fered INVITE requests being injected into the incoming
buffer, each SIP request from SMB is internally check-
ed in the SSM. This is done in the SSM’s SIP message
recognizer, whose purpose is to prevent sending incor-
rect SIP message to SIP server. Recognizer is a piece
of code that scans and parses the input and recogni-
zes whether it is in the language of the grammar, but
does not produce an abstract syntax tree or any other
form of output that represents the contents of the input.
Because of this intertwining of lexical analysis and
parsing of SIP messages, instead of having separate
scanner, integrated recognizer has been used. This app-
roach has a number of advantages including discard-
ing of the lexical disambiguation by means of the con-
text in which a lexical token occurs. Consequently the
possibly complex interface between scanner and pars-
er is removed, and both lexical and syntax checking
are integrated into a single analysis phase. This
approach is sometimes called scannerless parsing;
however this term is somewhat misleading since all of
the characters are anyhow scanned from the input buf-
fer. Implementation difference is that instead of having
one scanning function that accumulates characters into
tokens, there are multiple functions that can read char-
acters and then try to match it against some grammar
construct.

If the SIP message is recognized as a correct SIP
message it is then injected into the incoming buffer, ot-
herwise it is dropped in the SSM itself and the “400 Bad
Request” response is sent to the peer UA directly from
the SSM. This way we prevent SIP server from going
into cyclic restarts if the particular SIP request is caus-
ing server restart.

Nature inspired self-healing model...

VOLUME LXV. • 2010/III 27

Figure 4.
SSM operating
in the advanced
mode.
Each incoming
SIP request is
cloned into the
SSM Message
Buffer.

The cost of this virtually fault free operation is in-
creased processing time at both SIP message receiv-
ing and sending sides. Calculating dialog hash value
requires not only message cloning but also finding re-
quired SIP message elements during message receiv-
ing and sending. This is done using WFP callout func-
tions in Windows kernel mode.

3. Self-healing
in the SIP-based networks

In the previous section we have described a model of
self-healing within a single SIP-based network element.
In this section we will extend that model to the SIP-bas-
ed network architecture.

To solve the problem of service availability the cur-
rent practice (as implemented by some providers) is to
dedicate another SIP node as a backup of a primary SIP
node in such a way that either each primary SIP node
has its backup node (2*N model) or in a way that a set
of SIP nodes is dedicated as backup set to relay the pri-
mary ones out of service. The problem with both of these
approaches is that in addition to requiring large num-
ber of nodes to being deployed, the service becomes
unavailable during the transition phase needed for the
backup server to become operational. Moreover, nei-
ther of these approaches is capable of preserving SIP
sessions that were in a set-up phase at the moment
when a failure has happened [1].

We have based our approach loosely on the unilat-
eral mode of anycast-based model for service conti-
nuity in IMS networks [1]. In this mode public interface
of the UAS consists of two IP addresses, a primary and
a secondary IP address. This secondary address is the
primary address of another UAS. Problem with that mo-
del is that in case of node failure it does not preserve
SIP sessions in progress. Consequently the service
will be disrupted for all sessions in progress when a
given UAS encounters failure. With our approach UAC
perceives undisrupted level of service despite the UAS
failure.

To ensure this, similar principle as described in the
single network element scenario has been used. Unlike
with single network element where the heartbeat moni-
tor is implemented in the element itself, in this configu-
ration the heartbeat monitor is implemented in the part-
ner UAS, that is called guardian UAS (conversely the
UAS being monitored is called guarded UAS). The con-
figuration of such self-healing network is shown in the
Fig. 5.

The network model in Fig. 5 is configured as an NK
network with K=1, which means that every UAS sends
heartbeats to only one partner UAS, namely the guar-
dian one (in the Fig. 5. UAS B monitors heartbeats of UAS
A, UAS C of UAS B, and so on). In addition to two public
addresses each UAS has a dedicated inner interface
(IPxI) that is used to convey parsed content of SIP mes-
sages, in the internal format, to its guardian node. Each
UAS announces its primary and secondary address to

INFOCOMMUNICATIONS JOURNAL

28 VOLUME LXV. • 2010/III

Figure 5. Configuration of the self-healing network model corresponds to a NK network (K=1).
Heartbeat monitor is implemented in the guardian UAS. Each UAS has its own guardian UAS

(in this case UAS B is a guardian UAS of UAS A, UAS C is a guardian UAS of UAS B and so on).
Each UAS announces its address to router over OSFP.

the router using Open Shortest Path First (OSPF) pro-
tocol (or another IGP protocol), so if the server dies, the
router will remove it from an announcement.

3.1 Heartbeat monitoring in network
Heartbeat monitoring works as follows: when the UAS

receives message from the UAC the message is pars-
ed and converted into the internal format shown in the
Fig. 6 and Fig. 7. Internal format consists of the fixed
header which conveys hashes of the particular dialog
and transaction and a fixed number of pointers that
point to the particular SIP message headers which are
stored in the data part of the internal format. As a con-
sequence of using an internal format a guardian node
does not need to reanalyze the whole message but can
directly use parsed data from the internal format in case
that it must take over the function of its guarded node
(this mechanism is similar to the one in MPLS where
edge devices use labels instead of IP addresses to fur-
ther forward them). The message is then sent to its guar-
dian node in its internal format using nodes inner inter-
face.

If the SIP method received in message is BYE or
CANCEL guardian node will use dialog hash value to find
and delete this session from the list of active sessions,
otherwise it will simply store the received message in
the SMB. Those messages will then be used to re-initi-
alize dialog at UAS (in case of the failure of the guarded
node) in the same ways as it is described for the single
network element.

Previously described mechanism for heartbeat pac-
ing, when no data is received from the guarded UAS for
a certain minimum time period, is applied here as well.

Guardian UAS will use SSM to send a testing SIP INVITE
message to the guarded UAS, consisting only of man-
datory headers, excluding Call-Id. If alive guarded UAS
will response with “400 Bad Request” that will be sent
to back to the guardian UAS and ignored. When the guar-
ded UAS (e.g. UAS A in Fig. 5.) gets out of service sec-
ondary addresses of the guardian UAS (e.g. UAS B) are
announced in IGP (Interior Gateway Protocol) and, as al-
ready described for a single network elements, SIP mes-
sages from SMB (of the guardian UAS) are used to re-
initialize the dialog and transaction states of the UAS
for active dialogs.

In this configuration UAC that were attached to the
failed UAS will be dispatched to the UAB in a transpar-
ent way. For the period during which the failed UAS is
out of service a guardian UAS might temporarily en-
counter a burst of SIP messages. To compensate that we
propose the usage of simple cellular automata (CA) bas-
ed model.

3.2 CA model of networks dynamic
We assume the reader to be familiar with Cellular Auto-

mata, and present here only some basic elements.
Cellular automata, firstly introduced by Ulam and Von

Neumann [8], are a special class of finite automata that
can be described by the 3-tuple of Eq. (1). They contain
large numbers of simple identical components with only
local interconnections.

(1)

In the above equation S is a nonempty set, called the
state set, N ⊆ Z2 is the neighborhood, and δ :SN→S i s
the local transition rule.

Nature inspired self-healing model...

VOLUME LXV. • 2010/III 29

Figure 6.
Internal format used to convey parsed
SIP messages between the guardian and
guarded UAS. It consists of the Header part
that conveys dialog and transaction hashes
and Pointer l ists that points to headers
which are stored in “Data” part. Figure 7. Header part of internal format (left) and Pointer list (right)

A lattice of N identical finite-state machines (i.e. cells),
each with an identical pattern of local connections to
other cells for input and output, is called a cellular space.
Each cell is denoted by an index i and its state at time
t is denoted st

i (where st
i ∈ S). Cell i together with the cells

to which cell i is connected is called the neighborhood
ηt

i of the cell i. Local transition rule δ :SN→S gives the
update state si

t+1 for each cell i as a function of ηt
i . Typi-

cally CA works in a discrete manner. That is to say time
goes step by step and a global clock provides an update
signal for all cells.

The proposed models consists of a one-dimensional
automata with three cells per each UAS and is similar
to the Hodgepodge Machine of Gerhardt and Schuster
which was used to simulate oscillating chemical reac-
tions [9].

Figure 8.
One-dimensional neighborhood of the CA consisting of
the UAS itself (UAS B in the Fig. 5) and its guardian server
(UAS C in the Fig. 5) and guarded server (UAS A in Fig. 5)

Neighborhood of the CA consist of the UAS itself,
and its guardian and guarded UAS, as displayed in the
Fig. 8. The updating of cell sites is done asynchronous-
ly during the heartbeat monitoring at each heartbeat.
Each cell can be in one of the five states:

• 0 = healthy
• 1 = infected
• 2 = ill with high load
• 3 = ill with overload
• 4 = death

Cell (UAS) is healthy if it receives traffic only on its
primary IP address. If the secondary IP address is ac-
tive as well we consider such UAS infected since it
has to deal with excessive traffic of its guarded UAS.
However in this state UAS handles this additional traf-
fic in such a way that a regular traffic has not escalat-
ed into the high-load or overload traffic. In states 2 and
3 UAS has to handle excessive traffic but in such a way
that this additional traffic is causing a high-load or over-
load, respectively (difference being that in high-load si-
tuation UAS receives more messages that it can process
within a given period of time but it retains control of
how to handle them, while in the overload situation mes-
sages are lost without control). Cell is dead if the corres-
ponding UAS does not return heartbeats.

Formally we define this CA as follows:

(2)

Transition rule is defined as follows:

(3)

If all the UAS from the CA neighborhood at time t are
healthy (meaning that they are in state 0) then at time
t+1 they will remain in state 0 and no action is taken. How-
ever if at time t a guarded UAS is not healthy and pro-
vided that a guardian UAS itself is healthy then at time
t+1 a guardian UAS will change its state into the state 1
and will take over part of the traffic of its guarded UAS
(this transition takes place regardless of the state of a
guardian UAS when the guarded UAS is dead and a guar-
dian UAS is not). In all other cases the state of the guar-
dian UAS remains the same.

This transition rule ensures that for situations where
failing of the guarded UAS (e.g. UAS A in Fig. 5) caus-
es excessive traffic at the guardian UAS (e.g. UAS B in
Fig. 5) its guardian UAS (UAS C in Fig. 5) jumps in by
announcing in IGP its secondary IP address and provi-
sioning that some UAC traffic is dispatched to it. Natu-
ral ly, if the excessive traffic persists too long because
of (multiple) nodes failure, the risk of overload remains.

4. Testing and results

To test the efficiency of the described self-healing solu-
tion as well as the cost of SIP message preprocessing
we have tested solution in our local lab environment.
Test was run on an isolated Ethernet network using dual-
core AMD Opteron processor running at 2.4 GHz with 8
GB of RAM for running SIP Service and SSM. From the
SIP traffic generator SIP requests are sent according
to a standard proxy 200 scenario. For testing self-heal-
ing within the network configuration as depicted in Fig.
5 has been set up.

Request intensity was 10, 50, 70 and 100 requests
per second respectively, with each of these four differ-
ent SIP loads running for half an hour. SIP UA server was
modified to fail (enter an infinite loop) every 10 minutes.
Fig. 9 shows number of successfully handled requests
without using SSM, using SSM in basic mode, and us-
ing SSM in advance mode. For the network self-healing
testing a random UAS would fail every 10 minutes.

As seen in Fig. 9 using SSM even in the basic mode
increases percentage of successful SIP requests to
~99.998 percent. The difference to 100% is lost on re-
quests being processed or just sent from SIP UAC at the
time of SIP UA server restart. In the advance mode, all
the SIP requests being processed or sent from the SIP
UAC were available locally in the SMB and were used
to reinitialize all UA server state machines to the pre-
restart baseline bringing successfulness to 100 percent.

INFOCOMMUNICATIONS JOURNAL

30 VOLUME LXV. • 2010/III

Results for the self-healing recovery in the network
are shown in Fig. 10. In this case during high-load traff ic
this approach reaches five nines of successfulness. We
attribute this to small portion of SIP messages being ine-
vitably lost during route reconfiguration after UAS has
failed.

The cost of the SSM operation is shown in the Table 1.
Comparing the time needed to process a SIP message
without SSM active and with SSM active it can be seen
that in the basic mode which provides health-monitor-
ing and service recovery (but no recovery of active di-
alogs and requests that were in progress during re-
starts) SSM adds ~10% of overhead to the processing
times.

However in the advance mode
which provides recovery of all dia-
logs the overhead is ~50% because
of the additional time needed to co-
py each request into the SMB and
to calculate corresponding hash va-
lue. Despite the somewhat increas-
ed processing times, numbers from
Table 1 demonstrate the capability
of our technique to handle SIP pro-
cessing requirements of non-trivial
size for real SIP-based systems. It
is worth to mention that the demon-
strated efficiency could further be
improved by optimization that should
be applied to memory handling rou-
tines.

Similar results are obtained for
network recovery, shown in Table 2,
which demonstrates that the app-

Nature inspired self-healing model...

VOLUME LXV. • 2010/III 31

Figure 10.
Results showing number of successful ly processed

SIP request in the network using the SSM

Figure 9.
Results showing

number of
successfu l ly

processed
SIP request

without SSM,
with SSM working

in basic mode
and with SSM

working in
advanced mode

Table 1. Messages decoding times

roach with internal format distribution between two UAS
is very efficient and introduces a very slight overhead.

Finally, the effectiveness of the CA model dynamics
to compensate the traffic outbursts is shown in Fig. 11.
UAS were dimensioned to handle 120 calls per second
(CPS) in high-load traffic without messages being drop-
ped. As seen in the picture after the guarded UAS fails
without CA assistance almost 30% of messages were
lost during 70 CPS traffic and almost 90% during 100
CPS traffic. However with the CA assistance the number
of dropped messages decreases to ~3% and ~9% for
70 and 100 CPS respectively. Such results are under-
standable since with CA assistance excessive mes-
sage traffic will be dispatched between several UAS in
a transparent way.

5. Summary and conclusion

In this work we have presented an approach to self-heal-
ing SIP networks. New measure for evaluating SIP nodes
health, based on a SIP requests processing capabilities,
has been proposed. By experimental measurements it is

shown that the proposed solution is very efficient in self-
healing for both single network element, as well as in
the SIP-based network and the obtained results are very
promising. With the proposed approach service pro-
viders can ensure that outputs are not fuzzy and is al-
ways within service level agreements Further self-heal-
ing capabilities could evolve under this model including
media server recovery to provide self-healing not only
for signaling traffic, but for media traffic as well.

Authors

ZORAN RUSINOVIC received M.S. in Computer Sci-
ence from the Faculty of Computing and Electrical
Engineering of Zagreb University in 2004 and is cur-
rently a Ph.D. candidate at the Computer Science
department. In 2004 he joined Ericsson Nikola Tesla
company in Zagreb, Croatia, where he is currently a
senior consultant for enterprise IT solutions. He has
been engaged in many R&D projects in Croatia, Swe-
den and Germany, working in the area of network
system engineering, network evolution, QoS/ TE man-
agements and service architecture. For the past few
years his focus has been IMS architecture and end-
to-end QoS for multimedia delivery in SIP-based net-
works. His research interests include next-generation
networking, biologically inspired computing, self-star
and autonomic systems.

NIKOLA BOGUNOVIC graduated in 1967 from the Fa-
culty of Electrical Engineering, University of Zagreb
where he was awarded M.Sc. and Ph.D. degrees in
1971 and 1984, respectively. From 1968 until 1971 he
was a research assistant at Institute Rudjer Bosko-
vic, Zagreb. In late 1971, he was assigned a position
of visiting research associate to UKAEA, Cullham
Lab., England. Upon his return to Rudjer Boskovic in
1972 he was a principal investigator in various pro-
jects. At Vanderbilt University, USA. he was engag-
ed as full time visiting associate professor in 1985.
In 1990 he was assigned a position of co-associate
professor to Faculty of Electrical Engineering and
Computing, University of Zagreb. In 1996 he was ap-
pointed head of a Division of Electronics at Rudjer
Boskovic, and occupied a position of scientific ad-
visor in 1998. In 1999 he was assigned a position of
full professor at Faculty of Electrical Engineering and
Computing where he headed the Department of Intel-
ligent Systems from 2005 to 2008. Professor Bogu-
novic is a full member of the Croatian Academy of
Technical Sciences and has published over 100 sci-
entific and professional papers. His scientific inter-
ests include computer based instrumentation sys-
tems, intelligent systems and methodologies for com-
plex computer system design.

INFOCOMMUNICATIONS JOURNAL

32 VOLUME LXV. • 2010/III

Table 2. Messages decoding times for network

Figure 11.
Percentage of

lost messages
with and without

CA assistance
during guarded

node failure.
UAS were

dimensioned
to be able handle

120 CPS in
high-load traff ic.

References

[1] Boucadair M.,
“Introducing Autonomous Behaviors into
IMS-Based Architectures”,
In: Autonomic Computing and Networking,
M.K. Denko, L. Tianruo Yang, Yan Zhang (Eds.),
Springer-Verlag, Berlin Heidelberg,
pp.155–178, 2009.

[2] Rusinovic, Z., Bogunovic N.,
“Self-healing Model for SIP-Based Services”,
In Proc. of the 10th Int. Conf. on Telecommunications
(ConTEL 2009),
pp.375–379, 2009.

[3] Rosenberg, J., Schulzrine, H., Camarillo, G.,
“SIP: Session Initiation Protocol”, RFC 3261.

[4] Rusinovic, Z., Bogunovic N,
“Self-Protecting Session Initiation Protocol”,
In: Lecture Notes in Artificial Intelligence, Vol. 5177,
Proc. of the 12th International Conf. Knowledge-Based
and Intelligent Information and Engineering Systems,
I. Lovrek, R.J. Howlett, L.C. Jain, (Eds.),
Springer-Verlag, Berlin Heidelberg,
pp.717–724, 2008.

[5] Sterritt R., Bustard D.W.,
“ Towards an Autonomic Computing Environment”,
In Proc. of the 14th Int. Conf. on Database and Expert
Systems Applications (DEXA),
pp.699–703, 2003.

[6] Sterritt R., Chung S.,
“Personal Autonomic Computing Self-Healing Tool”,
In Proc. of the 11th IEEE International Conference on
the Engineering of Computer-Based Systems ECBS,
pp.519–527, 2005.

[7] Kuthan, J.,
“Accelerating SIP,”
SIP 2002, Paris, France, 2002.
http://www.iptel.org/

[8] J.V. Neumann,
“The Theory of Self-Reproducing Automata”,
A.W. Burks (Ed.), Univ. of Illinois Press,
Urbana and London, 1966.

[9] Gerhardt, M., and Schuster, H.,
“ A cellular automaton describing the formation of
spatially ordered structures in chemical systems“,
In: Physica D, Vol. 36,
pp.209–221, 1989.

Nature inspired self-healing model...

VOLUME LXV. • 2010/III 33

