
1. Introduction

Different mobility models have been proposed in the lit-
erature to cope with user mobility in different wireless
and mobile networks (e.g. cellular networks, ad hoc net-
works, etc.). Mobility model based prediction provides
useful input for dimensioning and planning of wireless
mobile networks, ad hoc routing algorithms, eff icient
multicast transmission and call admission control [3,8].

One of the well known mobility models is Random
Walk Mobility model, which is often used in network plan-
ning and in analyzing network algorithms, because of its
simplicity [1].

In the Random Walk Mobility model [4] the node moves
from its current location to a new location by randomly
choosing a direction and a speed. The Random Walk mo-
del defines user movement from one position to the next
one with memoryless, randomly selected speed and
direction. Each movement in the Random Walk Mobility
Model occurs in either a constant time interval t or in a
constant distance travelled d. When a mobile node reach-
es a simulation boundary, it simply bounces off the si-
mulation border with an angle determined by the incom-
ing direction, then the node continues moving along this
new path. As we mentioned, this is very easy to use, but
on the other hand this very simple model presumes un-
realistic conditions, like uniform user distribution in the
mobile network. 

To handle different levels of randomness, one can use
the Gauss-Markov Mobility Model. In this model initially
each node is assigned a current speed and direction,
and at fixed intervals of time, the speed and direction
of the nodes are updated. The value of speed and direc-
tion at any time instance are calculated based upon the
value of speed and direction at the previous instance
and a random variable [5].

However, in real-life networks, geographical charac-
teristics such as streets and parks influence the cell
residence time (dwell time) and movement directions
of users in the network, and result in a non-uniform user
density. While these models are appropriate for mathe-
matical analysis, easy to use in simulations and for
trace-generation, they fail to capture important charac-
teristics of mobility patterns in specific environments,
e.g. time variance, location dependence, unique speed
and dwell-time distributions [2].

In order to follow user movement patterns more eff i-
cient, City Section Mobility, or Mobility Vector model can
be used. In the City Section Mobility Model a section of
a city is represented where an ad hoc network exists [6].
The streets and speed limits on the streets are based
on the type of city being simulated. The streets might
form a grid in the downtown area of the city with a high-
speed highway near the border of the simulation area
to represent a loop around the city. 

If a flexible mobility framework for hybrid motion pat-
terns is needed, one can rely on the Mobility Vector [7]
model. A mobility vector expresses the mobility of a node
as the sum of two sub vectors: the Base Vector and the
Deviation vector. The base vector defines the major di-
rection and speed of the node while the deviation vec-
tor stores the mobility deviation from the base vector.
The mobility vector is expressed as an acceleration fac-
tor in different directions.

Beside the mobility models many works have dis-
cussed prediction algorithms, too. The prediction ser-
ves as an input for an optimal resource planning. 

The shadow cluster scheme [9] estimates future re-
source requirements in a collection of cells in which a
mobile is likely to visit in the future (as a “shadow” of
the user). The shadow cluster model makes its predic-
tion based on the mobile’s previous routes. In this mo-
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del, the highway traffic with various constant speeds is
simulated and users travel in forward and backward di-
rections. The shadow cluster model improves estima-
tion of resources and decision of call admission.

User movements in a cellular network can be de-
scribed as a time-series of radio cells the user visited.
The handover event of active connections (e.g. cell boun-
dary crossing) is recorded in the network management
system’s logs, thus the information can be extracted
from the management system of cellular mobile net-
works, such as GSM/GPRS/UMTS networks. The user
movements are described by the dwell-time and out-
going probabilities (the probability of a user leaving for
each neighbouring cell, called the handover vector).
These parameters can be calculated for each cell ba-
sed on the time-series of visited cells of the users. How-
ever, in some cases, these parameters – dwell-time and
outgoing probabilities – are not enough to capture all the
information present in the time-series of user move-
ments. In many situations the movement patterns can
be estimated more precisely if the model also consid-
ers the conditional probabilities between the incoming
and outgoing directions. In this paper we investigate the
effect of incorporating this additional information into the
mobility models on the accuracy of the models.

The results of this paper are applicable in engineer-
ing tasks of network dimensioning, can provide input
for more effective Call Admission Control algorithms in
order to ensure user’s satisfaction and optimal resource
usage in cellular wireless mobile networks [3].

2. Cell-centralized Markov 
mobility model

2.1 Motivation
The memoryless property of the Markov process

makes the Markov models in the literature easily appli-
cable. In many models, the Markov processes states
are based simply on the physical radio cells, i.e. one
state represents one radio cell. In this case, any poten-
tially present additional information in the user move-
ments cannot be included in the model. We propose a
model, in which the states of the model are constructed
according to a group of cells belonging to typical move-
ment directions. 

Our model takes into account the user history dur-
ing the prediction and merges the neighbor cells into a
direction group depending on the user behavior and his-
torical distribution and patterns, yet retaining the mem-
oryless property.

2.2 The model enhancement
In our method the direction of a user is identically

distributed between 0 and 2π. The user’s speed is be-
tween 0 and Vmax. After moving in a direction with a ran-
domly chosen speed for a given ∆t time, the user chang-
es its direction and speed. Ncel l denotes the number of
cells in the network.

A possible classification of cells can be seen in Fi-
gure 1. Using this case a user can be located in three
different states during each time slot in simple Markov-
chain based model, the stay state (S) and the left-area
state (L) and the right-area state (R).

The grouping can be derived from the user behavior.
If the users in right-hand side cells behave similarly
from the current cell’s point of view, the neighboring
cells will be merged into a common cell group, which re-
presents a state in the Markov model (R state). Other
grouping methods can be used as well, i.e. a stand-
alone cell can constitutes a group also. In our example
model each of the two groups (R and L) contains three
cells.

Let us define the random variable X(t), which repre-
sents the movement state of a given terminal during time
slot t. We assume that {X(t), t = 0,1,2,...} is a Markov-
chain with transition probabilities p, q, v.

If the user is in state S of Markov model for cell i (cur-
rent cell), it remains in the given cell. If the user is in
state R, it is in range of the cells on the right-hand side,
if in state L, it is in the left-hand side of the dividing line.

Since the transition properties are not symmetric,
the left-area state and the right-area state have differ-
ent probabilities. Figure 2 depicts the Markov-chain and
transition (Π) matrix.      

As we mentioned before, our aim is to use the infor-
mation present in the previous steps of the users for
motion prediction. In this case, the transition probabil-
ities are not handover intensities, but contain more in-
formation, specifically:
p – Probability of the event that the user stays for a times-

lot in cell i, and in the next timeslot it moves one of
the cell groups. According to the mentioned model
(Fig. 2), p1 means that the user moves in the next
timeslot into one of the right (R state) neighbor cells. 
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Figure 2.  
State diagram 

and Π matrix of 
3-state M-model 

(M3)

Figure 1.  
Neighbor cells separated

into two groups



q – Probability of the event that the user came into cell
i from one of the cell groups, and in the next timeslot
it moves into the same cell group where it comes
from. Thus q1 means that the user comes from the
right-hand side neighbor cells (R) and moves into the
same, R group (but not necessarily into the same
cell of the cell group).

v – Probability of the event that the user comes into cell
i from one of the cell groups, and in the next times-
lot it moves into another cell group. According to the
above mentioned model (see Fig. 2), v1 means that
the user comes from left neighbor cells (L) and moves
into the right group (R).
The probabilities introduced above can be calculated

from real network traces.
How can we use this model? 
How can we predict the user’s next steps?
We assume that mobile users are in cell i at the be-

ginning of a timeslot t. With each i cell a previously intro-
duced Markov model is associated, which handles the
users movement in this cell. The network operator’s log
contains the information where the users from cell i
were in timeslot t-1 (according to the assumption that
they were in one of the neighbor cells). Using this infor-
mation as initial distribution P(0), we calculate P(1) with
the transition matrix of the model: P(1) = P(0) ⋅ Π. 

P(1) shows the predicted users distribution for the
t+1 timeslot, in other way we predicted where the users
wil l be from cell i in timeslot t+1.

The number of users in cell i at timeslot t +1, Ni(t+1),
is given by (1).

where Si
adj(R) means the set of cell indexes from the

right-hand side cells of cell i, Si
adj(L) means the set of cell

indexes from the left-hand side cells of cell i.
The steady state probabilities of the Markov model

can represent a steady user distribution if the network
parameters do not vary. 

The balance equations for this Markov-chain are gi-
ven in Eq. (2).

(2)

We also know that PS+PL+PR=1, thus the steady state
probabilities can be calculated.

Knowing the result we can predict the number of mo-
bile terminals for time slot t +1 in a steady state:

(3)

As we mentioned earlier, this model is based on pos-
sible cell grouping (R and L states) and performs well
when the user’s movement has only one typical direc-

tion, because in this case the handover intensities of
the right-move (or the left-move) cells do not differ signi-
ficantly. 

If we try to predict the user’s distribution in a city hav-
ing irregular, dense road system, or in big parks, then the
handover intensities could differ. From this point of view
the best way is to represent all of the neighbor cells as a
separated Markov state, so we create an n+1-state Mar-
kov model:

– stationary state (S)
– move to neighbor 1...n state (MN1...MNn)
The steady state probabilities can be calculated as

in the previous cases (Eq. 4). 

(4)

Using the steady state result the predicted number
of users in the next time slot is given by Eq. (5).

(5)

where Si
adj means the set of cell indexes from all of

the neighbors cells of cell i.

2.3 Complexity and accuracy of the model
Based on the Markov model generator method intro-

duced in the previous section, a specific model can be
derived depending on the complexity limits and the
precision (accuracy) demand. 

The accuracy of the model increases as the num-
ber of states grows. The number of states grows when
the movement history (time dimension) is increased,
or when the number of direction (direction dimension)
is increased. Increasing the time dimension increases
the number of states exponentially, increasing the direc-
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tion dimension increases it linearly. With the state-space
rising, the computational complexity of the Markov steady
state calculations also follows a rising curve. The ques-
tion is the characteristic of these functions and the exis-
tence of a theoretical or practical optimum point. 

It is assumed that each cell has N neighbors and the
3-state (stay, left and right-move state) model is used to
determine the users movement. It is also assumed that
N/2 cells belong to both left and right Markov-states,
and the users are uniformly distributed between cells.
A theoretical error can be derived from this assump-
tion since in most cases the user motion pattern does
not result in a uniform distribution in the N/2 cells. In the
worst case the users move with probability 1 into one
of the neighbor cells. The error can be measured with
the difference between the uniform distribution and the
worst case. This difference is given by (6).

(6)

where N means the neighbor numbers, and M means
the direction numbers in the model.

We measured the computation complexity also as the
function of state number. This enables us to compare
complexity and prediction error in an easy way. Based
on the 1...M-state model the prediction computation is
calculated with the costs of Markov steady state mathe-
matical operations and other procedures necessary for
transition probabilities. The complexity can be estimated
with (Mstates

3+ Mstates+ 1/Mstates).

Figure 4.   Complexity and accuracy of the calculation

Figure 4 shows the complexity and error character-
istic. In the given model calculations the optimal point
of operation is around 5 states where error is minimal
at this level of error. 

In the previous comparison the direction dimension
sizing is used only. If we want to rely on the informa-
tion of the previous steps for the estimation, then move-
ment history has to be introduced into the model. In fact
this means that every state in the Markov-chain has to
be changed with M states. This causes exponential state
number explosion that can be seen in Figure 5.

As we have extended our model step by step in time
and in direction dimension, its precision increased along
with the complexity of the model. In order to minimize

the complexity, we developed a simple algorithm, which
is able to minimize the number of states based on merg-
ing adjacent cells. Due to size limitation this algorithm
is not discussed in this paper.

2.4 The effect of information of previous visited cells 
in the model

Neglecting the recent transition series of users in
the cluster, i. e. when the model does not take into ac-
count in model buildup the previous steps of mobile
users, the estimation is less precise.

In this section we show a simple example of the ef-
fect of previous user steps on the accuracy of the pre-
diction. Let us consider two routes as shown in Figure
6/b. The accuracy of transition probability estimations
is better if the model knows where the users came from,
compared to the RW-like estimation which cannot dif-
ferentiate the users on the two routes (Figure 6/a).

Figure 6.  User prediction methods
a. Model without memory, 

unknown where is the users come from
b. Model with memory, 

the previous steps of the users taken in account

To find the error rate of a movement-history-less RW
model compared to an algorithm that possesses user
distribution from history, we use the example cells shown
in Fig. 6. Let us define the following parameters:

– the number of incoming users 
on the upper route at timeslot t i s in1t, 

– the number of incoming users 
on the lower route at timeslot t i s in2t, 
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Figure 5.  
The increase of number of states in the case of 
d i fferent direction dimensions (3,4,5,6,7 states), 

and different time dimensions (1,2,3,4)



– similarly the number of users leaving 
on the upper route at timeslot t is  out1t, 

– the number of users leaving 
on the lower route at timeslot t is  out2t, 

and the user movement directions with a simple
transition matrix P=

.
The RW model in Fig. 6/a calculates the number of

leaving users (out1, out2) with a history estimation of
the P matrix, and with the sum of in1 and in2 (the total
number of users in the observed cell), but without the
knowledge of in1, in2. 

In our proposed algorithm, the use of in1, in2 means
that the model calculates based on the information of
the incoming users. The incoming users can be conside-
red uniform or different (marked users). Since the latter
is more accurate, in this comparison we use marked
users. 

Assume that the history estimation of the RW mo-
del’s  P matrix is based on the previous timeslot. That is
the P(out1 t+1) and P(out2 t+1) probabilities can be substi-
tuted with the relative frequency of out1t/(out1t+out2t)
and out2 t/(out1t+out2t), respectively. 

Applying the same assumption on the algorithm with
history, the number of leaving users can be calculated
with the P matrix itself, that is out1 t+1= in1t*p11+ in2t*p21
and out2 t+1= in1t*p12+ in2t*p22. At a given and constant
P matrix let us assume that the incoming user distribu-
tion varies, that is the in1t/in2t ratio (Incoming Distribu-
tion – ID) changes. 

Figure 7 shows the error of RW compared the esti-
mation using history. 

Figure 7.  HOV prediction error in percents – 

Given in1t-1/ i n2 t-1= 1 and P= {{0.75, 0.25}.{p21, 1-p21} } ,
p21 plotted with four different values

The RW model works with error if IDt-1 is different
from IDt which is caused by the fact that the RW histo-
ry P-estimation in this special case equals the number
of leaving users of the previous timeslot. That is it does
not include the actual IDt value. Contrarily, the history-

model calculates with the actual number of incoming
users and the P matrix itself, which gives the exact pro-
babilities of the leaving users distribution. The error rate
caused by the lack of history increases as the variance
of ID increases that is the in1t/in2t ratio changes. 

Using history cannot enhance further the accuracy
of the estimation if p21 = p11 and  Fig. 7 shows a cons-
tant zero error rate (p11 = p21 = 0.75). In this case the out-
going direction of each user is independent of the inco-
ming direction and the history is useless, since users
arriving from each direction are leaving towards a given
direction with the same probabilities. 

The results show that our proposed movement his-
tory significantly increases the accuracy of the model
in cases when the ID distribution in an arbitrary cell has
high variance, or has periodicities without stationary
distribution. 

To apply the accuracy with the use of information
about the previous user visited cells in the mobility mo-
del, we introduce our estimation model discussed in
the previous section (Mn, where n denotes the number
of Markov states). The states of the model show and store
where the users came from. The memory can be inter-
preted in two meanings. Time dimension memory shows
the number of timeslots in the past that the model con-
siders. Thus a model with m time dimensions in time t
can calculate the next transition based on the user po-
sition in (t-m, ... t-2, t-1). Direction dimensions memory
shows the number of directions that the model can dif-
ferentiate. In general a cell cluster consists of hexago-
nal cells. The direction dimension of a model on this clus-
ter is maximum 6. If transitions from the central cell to

two adjacent cells are not differentiat-
ed then the direction dimension is de-
creased by 1. 

If we use more information from user
movement history in prediction than our
model does, the complexity increases
exponentially. Obviously the direction
numbers in the model influence the
complexity as well. We come to a sim-
pler model if we use only left and right
directions instead of usage of all neigh-
bor cells as a state in Markov model as
it was shown in the previous sections.

Our work was motivated to find an
optimal size of estimation parameter
space with the highest accuracy be-
side tolerable complexity. 

3. Simulation and numerical results

The inaccuracy of the RW-based mobility models de-
pends on the properties of the transition probabilities.
The RW model is only capable of accurate prediction of
user movements in case of uniform movement distri-
butions (e.g. all elements in the transition probability
vector are equal to 1/6). In the simulation we applied

INFOCOMMUNICATIONS JOURNAL

44 VOLUME LXIV. • 2009/III



an extended RW model (ExtRW) which was capable of
tracking different cell dwell times. ExtRW can model
better different user velocities with the correct dwell
time parameters than RW which uses a fixed dwell time.
With the variable dwell time parameter, the ExtRW sim-
ulation model can adapt to different movement veloci-
ties, i.e. a user with slow motion spends more time in
each cell before he/she initiates handover to one of its
neighbors. ExtRW does not cope with different directions
of stepping forward. Thus stepping into each neighbor-
ing cell has an equal conditional probability. On the con-
dition that at a specified moment a handover is done,
the direction is uniformly distributed on the set of neigh-
boring cells. 

The estimation procedure was validated by a simu-
lation environment of a cell cluster shown in Figure 8.
The cluster consisted of 61 named cells, the simulation
environment included geographical data that are inter-
preted as streets on the cluster area. The drift of the
movement is heading to the streets from neutral areas.  

The simulation used 610 mobile terminal (10 for each
cell), in the initial state uniformly distributed in the clus-
ter. The average motion velocity of the users is parame-
terized with a simple PH cell dwell time simulator (re-
ciprocal of exponentially distributed values). 

The simulation consists of two parts. The reference
simulation is the series of the transitions that the mo-
biles have initiated between cells. It produces a time-
trace that contains the actual location data for each
mobile terminal in the network. We have used this refe-

rence simulation as if it was a
provider’s real network trace. 

The estimation procedure
uses the past and the current
reference simulation results
to estimate future number of
users in each cell. The esti-
mation error is interpreted as
the measure of accuracy of
each mobil i ty model in this
paper. 

The prediction starts 100
timeslots after the reference
simulation init iation. During
the warm-up process the re-
ference simulation produces
enough sample data for the
correct estimation which us-
es the previous reference re-
sults as an input to estimate
the future user distribution.
Each user-transition in the 100-
timeslot reference period is
used to derive transition pro-
babilities, motion speed and
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Figure 8. 
a. Cell cluster

with streets 
and park

b. OMNET++ 
simulat ion

Figure 9.
TREV values in RW, ExtRW, M3, M7 models with λ=(1, 4)



patterns in the simulation cell-space. These patterns
serve as an input for the simulation threads of each mo-
bility model. The models have the same input through-
out the simulation process so that the results are com-
parable.    

The estimation errors of the models in the simula-
tion were measured with the average error of the cells
in each timeslot. It produces a time-dependent relative
error value (TREV) in each timeslot for the cell-cluster.
TREV shows the average error compared to the actual
user number in the cells. It can be seen in Figure 9 that
TREV depends on the dynamics of the motion, basically
on the cell dwell time. The generic lambda (λ) parame-
ter affects the motion velocity of the simulated users,
the higher value means longer dwell time thus slower
motion. 

The relative performance of the models can be seen
in Figure 10. The execution time of the methods of the
model is plotted in each timeslot on logarithmic scale.

4. Conclusions

In this paper we proposed an alternative Markov-chain
based method. The simulation results proved the ana-
lytical properties of the proposed mobility models. 

The algorithm with the simple RW model is not ca-
pable of precise adaptive location prediction due to its
inflexible parameter set. Since the user movement pat-
terns in the simulation are not completely random due
to the streets and geographical circumstances, the uni-
formly distributed Random Walk pattern cannot model
it. 

The Markov mobility model is the most accurate in
the estimation process since it has the ability to calcu-
late with motion direction, speed and the recent hand-
over event (user history) also. The three-state model focu-

ses on cell dwell time since
it differentiates only two mo-
tion directions which cannot
follow general drifts. The n-
state model is more sophis-
ticated in terms of both the
cell dwell time and motion
direction since it is capable
of following for example six
di fferent drifts in the cell
cluster. 

The network operator
may use a seven-state Mar-
kov model to make predic-
tions on the future distribu-
tion and location of users
among radio cells to justi-
fy CAC or other QoS deci-
sions.
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