
1. Introduction

The complexity of information-based systems is grow-
ing continuously, therefore new approaches are need-
ed to tackle the arising problems. Self-adaptive think-
ing is one of the promising ways to mention, where the
system is able to evaluate its own behavior, make de-
cisions to alter this behavior, and perform the necessary
reconfigurations in order to improve its performance.
Such changes may be required either because of the
changing environment and requirements, or because of
the lack of sufficient knowledge to solve the problem.

Self-adaptive systems are usually model-based sys-
tems. Several model representations can be used to de-
scribe the behavior of systems, depending on the type
of system and application. For description of systems
with heavy communication between its subsystems, an
elegant and efficient way is the usage of the Communi-
cating Sequential Processes (CSP), which a process al-
gebra-based mathematical formalism.

Efficient self-adaptive systems can be created if there
are efficient tools for the support of learning, testing,
adapting, and configuring methods. For reliable systems
the behavior and the working flow of the system have
to be exact and provable. CSP provides efficient tool sets
for specification, verification and testing.

With CSP, not only the communication protocols can
be described efficiently, but the behavior of the system
as a whole as well. It is particularly true for event-based
systems with heavy intercommunication need.

In this paper CSP-based modeling is proposed, which
supports self-adaptive, self-configuring, self-learning and
even self-testing behavior of complex systems. The pro-
posed system uses a simple and robust learning me-
chanism: system components can discover new beha-
vioral elements (e.g. communication protocols, algorithms
etc.) in their neighbor’s knowledge base, and, if neces-
sary, these rules can be learned. The proposed app-
roach is illustrated by two practical applications: a self-

adaptive communication protocol and a sensor network-
ing data acquisition system. 

The outline of the paper is the following: Related re-
search is briefly summarized in Section 2, and then CSP
is reviewed in Section 3. Section 4 introduces the pro-
posed CSP-based self-adaptive system, and its ability
to support self-adaptive behavior is described. In Sec-
tion 5 two practical applications illustrate the potential
of the approach, and Section 6 concludes the paper.

2. Background

Managing complexity is the main driving force behind
the application of self-adaptive systems. Self-adaptive
systems with learning and teaching abilities can hand-
le problems in a novel way: the designer does not need
to build in all the required information for every possible
case, but rather the system can handle the exceptions
in run-time. Such systems are flexible and can adapt
themselves to new challenges. The importance of the
area is shown by the wide range of research and the high
number of publications. Self-adaptive systems were cre-
ated in many application areas, e.g. distributed servi-
ces [1], mobile and next generation networks [2,3], self-
organizing solutions [4], or even organic robot control
architectures [5] and bio-inspired approaches [6]. Self-
adaptive protocols also bring new possibilities in proto-
col design and network organization [7,8].

In the field of sensor networks, in addition to the wide
range of routing applications utilizing self-adaptive fea-
tures (e.g. [9]), several interesting self-adaptive and self-
organizing solutions were proposed: a self-organizing
s y stem was used to create a low-cost localization sys-
tem [10]; adaptive self-diagnosis services were propo-
sed to monitor network status and degradation [11]; or in
monitoring applications self-configuring nodes prolong
network lifetime while providing the required sensing
service as well [12].
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A good summary on the application of CSP can be
found in [13]. An important usage of CSP is the specifi-
cation and verification of fault-tolerant systems; an ele-
gant verification technique for this problem was propo-
sed in [14]. CSP was used in large industrial projects
as well, e.g. the International Space Station project [15],
and the testing of the avionic systems of an Airbus air-
craft [16].

3. The CSP 
(Communicating Sequential Processes)

CSP [17-19] is a notation for describing concurrent sys-
tems and the interaction patterns between the compo-
nent processes. It has a wide range of applications from
programming languages [20] to verification of safety pro-
tocols [21]. A CSP system is built up from independently
running sequential processes, which communicate with
each other using message passing. The mathematical
background is process algebra.

Each process has its own alphabet, which is the set
of all the communication events the process might use.
CSP defines several operators, by the help of those ope-
rators complex process descriptions can be easily con-
structed. We can express sequential communicational
events (→), decision (P</ p >/ Q means: if b then P else Q),
recursion, different choices (deterministic: ■■ , or non-de-
terministic:Π ), and simultaneous behavior of processes.
The language has its own built-in basic processes and
we can also use inner variables. 

Let us see CSP expressions for example:

P1 = up → down → P1

Figure 1.  P1 process

We can see that P1 is a process and it is shown in
Figure 1 “up and down” are events from the alphabet.
The next example is:

COPY = left?x → right!x → COPY

It is a copy-machine and it defines two new things:
the channels and an input and output operator. There
are “left” and “right” channels in this example. “ ? ” means
input and “ ! ” means output. So this machine copies “ x ”
that comes in the left channel and puts it out in the right
channel. Next rule is the external choice: 

P ■■ Q

It is a process which offers the environment of the
choice of the first events P and of Q and behaves accord-
ingly. The combination of the previous examples is:

ExampleState = 
c?rq → c!rp → ExampleState ■■ c?rpEnd → NextState

There is an environmental (external) choice in pro-
cess “ExampleState”, denoted by “■■ ”. One of the pos-
sible ways: to get an “ r q ” event on channel “ c ”  from an
other process, consequently, the “ExampleState” pro-
cess sends “ rp ” through channel “ c ” and after that stays
in the same state. The second choice is to get an “rqEnd”
signal on channel “ c ”, which shifts the process to state
“NextState”. CSP gives us a tool for determining the
trace of processes. 

Trace of a process is the set of all the possible se-
quences of events that can happen during the process’
life. An element of a trace is written between signs “<>”.
Trace of a process always contains the empty trace (<>).
If we follow the example mentioned above, the traces of
the process can be determined:

traces(ExampleState)=
(<>, <c?rqEnd>, <c?rq>, <c?rq, c!rp>, 
<c?rq, c!rp, c?rqEnd>, <c?rq, c!rp, c?rq>, 
<c?rq, c!rp, c?rq, c!rp, c?rqEnd>, 
<c?rq, c!rp, c?rq, c!rp, c?rq>... )

There are various tools for checking CSP implemen-
tations. Animators make it possible to write arbitrary
process descriptions and to interact with them [22],
while refinement checkers explore all of the states of a
process [23]. CSP is very useful to debug failures, dis-
cover deadlock or livelock, and is an ideal language
for helping verification, validation and test processes
[24,34,35].

4. CSP-based self-adaptive system

Imagine a system where every component can auto-
matically recognize the other components’ communi-
cation and working rules. They can learn from each
other new methods of operation, and the whole system
can adapt to changes in the environment. Of course, it
is true that if at least one element of the system knows
the right rule(s) that gives a solution for the occurring
problem. From this point, the adaptation process is auto-
matic. In this case the system contains self-adaptive,
self-configuring, and self-learning elements indeed.

The system builds up from nodes that can commu-
nicate with each other as can be seen in Figure 2. Every
node has a database that stores fields of CSP rules and
conditions. The CSP rule gives the communication/work-
ing flow of the node. If the condition is true the corres-
ponding CSP rule will be activated, and all other rules
will be inactive at the same time. An example will be
presented in Section 5.1.

There is a special node in the network that includes
the referenced data. That is useful if some nodes try to
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propagate an erroneous working mechanism. In this
case, the special node orders the “bad” node(s) to de-
lete the erroneous rule(s) and learn the good one. More
details are found about it in Section 4.3.

4.1 Teaching/Learning
The rules are short and optimized CSP code, de-

scribing the communication and the processes in the
system, and are stored in the local rule base of the
nodes. Every node can check the database of other
nodes. If it finds an unknown rule, it can learn it. This
flow is illustrated in Figure 2, where Node 1 requests
the rules of Node 2. Node 2 sends the requested data

from its rule base. Node 1 processes the received data
and if it finds new conditions and/or rules in the record,
it will learn it. In Section 5.1 and 5.2 this process will
be illustrated in practice.

4.2 Testing
An ideal test tool could recognize every communi-

cation device automatically and would be able to de-
termine the protocol of the other party. This is a compli-
cated task; its complexity can be compared to learning
a new language from a grammar book and a dictionary.

Computers and mobile devices communicate with
each other with the help of artificial languages. These
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Figure 2.  Structure of the system
Nodes can communicate to perform normal operation (solid lines), 

and also can exchange information to support self-adaptivity (dashed line). 
In the example Node 1 requests behavioral information from Node 2, and stores the rules in its own data base.

Figure 3.  Background protocol” between initiator node and a node. 
1. Ask the traces of the tested machine;  2. Send back the asked information;  3. Generate test cases and start the test



protocols have several variations and versions. This
fact can cause problems in many cases, because two
different versions of the same protocol are sometimes
not compatible. 

Here, the inter-operability and the cooperation be-
tween devices are difficult. An efficient solution would
be to be able to recognize the protocols used by differ-
ent devices, and be able to learn and use them in the
subsequent communication. The protocol and the ver-
sion are recognized by extra information stored in the
form of CSP rules. The CSP rules are requested by the
initiative node with the help of the background proto-
col, shown in Figure 3, and described in detail in Sec-
tion 4.3.

A simple and fast verification technique is when the
tester node uses simple pattern matching on the recei-
ved and its own CSP rules. If the rule does not match
the authentic rule, the node will drop its own rule and
will start the learning period by reconfiguring itself to
the right CSP rule. A java-based application working with
this principle will be shown in Section 5.1.

An additional, but more complicated possibility is the
functional test of the used communication protocol. Bas-
ed on the dictionary and the grammar book it can be de-
cided whether the speaker is really speaking the right
language: the tester has to ask questions and from the
replies it can determine whether the speaker correctly
speaks the language. Similarly, communication proto-
cols can be verified by CSP rules, which include all the
information required for test generation: the communica-
tion rules, interfaces and signals [25]. From the CSP mo-
del a behavior tree can be built and test cases can be
generated, then the tester node can start to analyze the
other node with the help of generated data [26-28].

4.3 The service process
In this section the service process will be describ-

ed, which provides the means of learning and testing for
the system components. In the system there always is
a special node that has the reference data, being author-
itative in conflict situations. Otherwise, every node is
equal. A node can request data from another node using
the following protocol, described in CSP:

Node = NormalOperation
NormalOperation = c!RD_rq →NormalOperation ■■ c?RD_rp →
ProcessData ■■ c!TA_rq →NormalOperation ■■ c?TA_rp →Tester

ProcessData = LearnNewComponent 
</ RD_rp_has_new� NormalOperation

LearnNewComponent = NormalOperation 
</ accomplished� LearnNewComponent

Tester = c!rq →Tester ■■ c?rp →Tester ■■ c!rqend →WaitTester
WaitTester = c?rpEnd →NormalOperation ■■ c!rqEnd →WaitTester

where
c = channel, ? = input, ! = output, TA = Test Alphabet, 

RD = Request Data, rq = request, rp = response
rq ∈ TestAlphabets ∪ OtherRequest, rp ∈ Responses

This automaton describes one half of the basic back-
ground communication of a node. In state NormalOpe-

ration, with the help of RD_rq (request for Requested
Data) signal, a request is sent out to another node ask-
ing for its database. The reply arrives in message RD_rp,
which is processed and the receiver learns the received
rules. With the help of the TA_rq (request for Test Alpha-
bet) signal, which can also be sent out in NormalOpe-
ration state, the node asks the other node to send infor-
mation needed for testing. 

This information comes in TA_rp (this is the active CSP
rule); if the process is supported by the machine under
test, a transition is generated to state Tester, where the ge-
nerated test suite is running – in the automaton it is re-
presented by rq-rp (request–response) message pairs.
If testing is over, the initiator node sends an rqEnd signal.
As a response, the other node sends back an rpEnd sig-
nal and it takes back the automaton into the initial state.

The other part of communication runs on the respon-
der node. For sake of clearness, this part of the auto-
maton is shown separately, as follows:

Node = NormalOperation
NormalOperation = c?x →RequestData </ x = RD_rq >/ 

(TestAlphabet </ x = TA_rq >/ NormalOperation)
RequestData = c!RD_rp →NormalOperation

TestAlphabet = c!y →TestState </ y =TA_rp >/ NormalOperation
TestState = c?rq →c!rp →TestState ■■ c?rqEnd →TestEnd

TestEnd = c!rpEnd →NormalOperation ■■ c?rqEnd →TestEnd

where
c = channel, ? = input, ! = output, TA = Test Alphabet, 

RD = Request Data, rq = request, rp = response
rq ∈ TestAlphabets ∪ OtherRequest, rp ∈ Responses

The responder node starts from the NormalOpe-
ration initial state. If the signal RD_rq (request for Re-
quested Data) arrives via channel c as signal x, the auto-
maton steps to state RequestData, otherwise the state
does not change. In state RequestData the requested
data is send back in message (RD_rp). If the signal TA_rq
(request for Test Alphabet) arrives via channel c as sig-
nal x , the system turns into TestAlphabet state, other-
wise, the state does not change. In TestAlphabet state
if the TA_rp is sent back via channel c as signal y , the
automaton turns into state TestState. Otherwise, it steps
back to state NormalOperation. 

Testing happens in Test State communicating with
pairs of request and response messages; if it is over,
the tested machine gets an rqEnd message. It inducts
the shift to state TestEnd, where it is also possible to get
other rqEnd messages. After sending an rpEnd message
the system gets back to its normal operation at the ini-
tial state.

5. Applications

5.1 Self-configuring communication system
Self-adaptive communication protocols will appear

in the future in many application areas and they will be
able to adapt to changes of the environment. In the fol-
lowing example a system is defined in which every node
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can test its communication partner and thus use the app-
ropriate protocol. Simple examples include adaptivity
to channel quality (in a noisy channel more robust pro-
tocol must be used); or channel safety (in a safe chan-
nel encryption is pointless; otherwise cryptographic de-
fense of data is inevitable.)

In the demo application every communicating node
has a database. This structure was defined in Section 4
and this scenario follows it. One of them is the part of de-
scribing communication rules. Here we use CSP traces,
because it is equivalent to the standard CSP language,
it is compact and easy to interpret (naturally, redundan-
cies are removed from the traces for sake of compact-
ness.) The trace(s) is/are chosen from the set of traces
about the following view-points:

– the trace will be optimal as it is available,
– cover the given working/running mechanisms.
The traces give us a further advantage. If the used

trace is finite we have good chance that the program of
the node is livelock free. Of course, there are many CSP
traces that are infinite. In this case, it has to be modi-
fied manually to work right. So the trace works like an
indicator in the system and shows us if the program code
includes some fatal errors. An example is presented
in Table 1. This example includes an extra element and
a status part. It is just an indicator that signals to the
user which rule is active.

The simple example database contains two rules.
The first (currently active) rule defines the behavior of
the system when the communication channel is of good
quality (packetLost=0); in this case received messages
are not acknowledged. The second rule explains the
expected behavior if the message loss rate is unaccept-
able (packetLost >0); in this case received messages
must be acknowledged by the receiver, otherwise the
sender node retries the transmission two times, after a

backoff time of 100. The channel quality can be measur-
ed by any appropriate way (not included in the descrip-
tion); in the example condition the measured packet
Lost variable is checked.

The main advantage of this self-adaptive communi-
cation scheme is its ability to adapt to any extreme en-
vironment without re-planning the whole system. Only
a new record, containing the communication rules of the
nodes has to be added to the database and the entire
system will work according to the changed parame-
ters. Naturally, not only a client/server connection can
be controlled this way but the whole networked system
can update its communication rules.

Note that a communicating node can never know pre-
cisely which communication rule (known or unknown)
is used by its partner at the moment. The test functiona-
lity described in Section 4.2 can help in this case, be-
cause the client is able to check the other party’s com-
munication protocol, or it can learn it if that method is
unknown yet, as shown in Figure 2.

In this simple example the server (the node with the
authentic data in case of conflict) has rules, shown in
Table 1. The client starts its operation with its database
empty thus initializes the synchronization process of the
communication rules. The server sends the communi-
cation rule base to the client. The client learns the new
records and finishes the synchronization process. 

The log of the operation can be seen in Table 2. In
this example only a server-client communication was
used, but it can be naturally extended to a larger net-
work. The demo program, developed in Java, can be
downloaded from [29].

5.2. Self-adaptive sensor networks
Sensor networks are special computer networks, con-

taining potentially hundreds or thousands of embedded
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Table 1.  The database of a communicating node

Table 2.  Server and client node logs



sensor nodes (called motes). Every mote is a small, usu-
ally battery-powered device, built around a low-power
microcontroller running at a few MIPS with a few kilo-
bytes of RAM, and is equipped with a wireless transmit-
ter and the application-specific sensing capabilities [9].
Self-adaptivity is a widely researched area of sensor net-
works. Since inter-mote communication is usually done
by ad-hoc networking, network elements must discover
and adapt to unknown and potentially changing network
topology. 

Other interesting solutions include adaptive resource
allocation [30], clustering [31], or automatic topology cont-
rol [12], to achieve longer network lifetime. However, self-
adaptivity is not provided at the application level. Cur-
rently the only way to change the application is the (in-
network) reprogramming of the motes, where the whole
memory footprint (usually tens of kilobytes) must be down-
loaded, inducing a serious overload on the network. CSP-
based modeling provides an elegant way to include high-
level self-adaptive properties in the network. The follow-
ing proof of concept application was developed for Mica
motes [32] running TinyOS operating system.

In the network every mote has a small built-in CSP in-
terpreter that can translate modified CSP traces. Instead
of the full CSP description, the equivalent traces were
used again to (1) simplify the complexity of the interpreter
and (2) decrease the message sizes. In addition to the stan-
dard CSP code, few extensions were added for the sake
of efficiency: the syntax of the decision operation was
changed (syntax: i(condition)(true branch)(false branch)),
and the for loop, as an inseparable event was added
(syntax: f(control expressions){body}).

The application layer of the motes becomes self-con-
figuring with the help of this solution. Every mote can de-
tect the actual program to be run, and motes can learn
new application pieces, if necessary. Thus the opera-
tion can be adapted to the actual requirements. The de-
mo application contains a simple sensor (light sensor).
In mode 1 motes measure the ambient light and each
mote in the network learns the position of the brightest
spot. Mode 2 is more complicated: here each node builds
a list of the brightest N nodes.

The CSP rules describing the operation in mode 1
are shown in Table 3. The measurement process is de-
scribed by the first rule: the measured data is stored
and broadcasted to the network. The second rule de-
scribes the diffusion process: if the received measure-
ment data contains brightest data than the stored one,
the received data is stored and broadcasted. The third
rule defines the network query.

The operation in mode 2 is similarly described in
Table 4. The measurement and diffusion processes are
more complicated – note the multiple-line rules.

The network is operated in mode 1 and if require-
ments change, the algorithm describing mode 2 can be
diffused in the network, or part of it. The application was
developed in the TinyOS environment and can be down-
loaded from [33].

6. Conclusions

This paper presented a self-adaptive framework using
CSP-based models to describe behavioral elements in
the system. The elements of the system can perform
testing operations, and – if required –, can learn new
rules from other system components, thus the whole
s y stem can adapt to changing requirements. The testing
and learning are supported by a simple services pro-
cess.

The feasibility of the described method was illust-
rated by two practical applications: an adaptive commu-
nication discovery protocol illustrated self-adaptive be-
havior of the system when the qualities of the commu-
nication channel changes. The sensor networking app-
lication illustrated self-adaptivity on application level:
changing requirements induce changes in the applica-
tion program.
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