Consistency verification of stateful firewalls
is not harder than the stateless case

LEVENTE BUTTYAN, GABOR PEK, TA VINH THONG

Laboratory of Cryptography and Systems Security
Budapest University of Technology and Economics, Department of Telecommunications

{buttyan, pek, thong}@crysys.hu

Keywords: ???2?

Firewalls play an important role in the enforcement of access control policies in contemporary networks.

However, firewalls are effective only if they are configured correctly such that their access control rules are consistent and
the firewall indeed implements the intended access control policy. Unfortunately, due to the potentially large number of rules
and their complex relationships with each other, the task of firewall configuration is notoriously error-prone,

and in practice, firewalls are often misconfigured leaving security holes in the protection system. In this paper, we address
the problem of consistency verification of stateful firewalls that keep track of already existing connections.

For the first sight, the consistency verification of stateful firewalls appears to he harder than that of stateless firewalls.

We show that, in fact, this is not the case: consistency verification of stateful firewalls can be reduced to the stateless case,
and hence, they have the same complexity. We also report on our prototype implemetation of an automated consistency

verification tool that can handle stateful firewalls.
1. Introduction

Firewalls are the cornerstones of improving the secu-
rity of enterprise networks. Simple packet filter firewalls
work in a stateless manner: they inspect the packets
passing through the perimeter of the network as inde-
pendent objects, and decide to accept or deny them
according to a predefined static ruleset. Modern firew-
alls, however, are more complex and perform stateful
packet inspection: they keep track of the already ex-
isting connections and they decide about the fate of a
packet based on both its header information and the
state of the connection that it belongs to.

In practice, firewalls are often misconfigured. Mis-
configuration errors result in inconsistencies in the fire-
wall [1,7]. An example for a critical inconsistency is
when all the packets that are intended to be denied by
a given rule of the firewall are accepted by some pre-
ceding rules. This is called shadowing, because the in-
tended effect of the deny rule is cancelled by the pre-
ceding accept rules. Shadowing is a critical inconsis-
tency, because it is likely that the deny rule is there to
stop some well-known malicious traffic, however, due
to the shadowing, that traffic is not actually stopped by
the firewall. Such inconsistencies can easily occur
when the firewall has a distributed implementation
and/or when it is managed by multiple administrators;
both being frequent cases in large organizations.

Checking a large firewall (i.e., hundreds of access
control rules) for inconsistencies is difficult and prone
to errors when it is done in an ad-hoc, non-systematic
manner. Thus, several formal methods and automated
tools have been proposed in the literature [1-12], but
essentially all of them were designed for finding incon-

sistencies in stateless firewalls. However, stateful fire-
walls are much more broadly used nowadays due to
their connection tracking feature. Finding inconsisten-
cies in stateful firewalls has been considered to be
harder than the stateless case due essentially to the
potentially very large size of the state space. A first at-
tempt to model stateful properties of firewalls is pre-
sented in [13], but that work does not propose any me-
thod to find inconsistencies in stateful firewalls.

In this paper, we propose a modeling technique for
states and, for the first time, a systematic method for
detecting inconsistencies in stateful firewalls. We mo-
del a state as a particular subset of the firewall ruleset
that consists of all the static rules and those dynamic
rules that are relevant in the given state. We show that
the number of inconsistencies in any state cannot be
larger than the number of inconsistencies in the desig-
nated state that includes all dynamic rules. Hence, it is
sufficient to check that single designated state for in-
consistencies: if no inconsistency is found in that state,
then no other state can contain any inconsistencies.
Moreover, if the designated state is not free of incon-
sistencies, then this fact proves that the firewall is in-
consistent in at least one state (the designated one).
Therefore, we essentially reduce the consistency veri-
fication of a stateful firewall to the consistency verifi-
cation of a single static ruleset.

In order to automate the verification, we implemen-
ted a software tool in C#, which is capable of finding in-
consistencies in the configuration of stateful firewalls.
Our tool is based on FIREMAN [7], an approach which
was originally developed for stateless firewalls. We
note, however, that the real power of our approach is that
any stateless tool could have been used. We used the

VOLUME LXIV. = 2009/11

Consistency verification of stateful firewalls...

FIREMAN approach beacuse it uses Binary Decision
Diagrams (BDD) for handling IP range set operations,
such as intersection and union, and BDDs are concep-
tually simple and very efficient.

The rest of the paper is organized as follows: We de-
fine inconsistencies and inefficiencies in Section 2. We
give a brief overview of the connection-tracking feature
of contemporary firewalls in Section 3. In Section 4 we
introduce our main theorems and their proofs, while Sec-
tion 5 reports on our implementation. Finally, we conclu-
de the paper and give some future plans in Section 6.

2. Inconsistencies and inefficiencies
in firewalls

The configuration of a firewall consists in the ruleset
that the firewall uses for filtering the traffic. A stateless
rule is represented in the form <P, action>, where P
corresponds to a predicate describing the criteria that
a packet has to meet to match the rule, and actionis
the corresponding action that is executed when there
is a match to the rule. In case of stateless rules, predi-
cate P can be represented as a 5-tuple (prot, srcaddr,
srcport, dstaddr, dstport), where prot refers to a proto-
col (tcp, udp, icmp), srcaddris the source IP address
range, srcportis the source port range, dstaddris the
destination IP address range, and dstportis the desti-
nation port range that should be matched by a packet.
In addition, an action can be acceptor deny, the mean-
ing of which should be intuitively clear.

The ruleset of a firewall may be inconsistent and/or
inefficient. In this paper, we consider three types of in-
consistencies: shadowing, generalization, and correla-
tion; and one inefficiency: redundancy. These have al-
so been considered in prior works of others [1,7], but
in a stateless environment. In Section 4, we show that
they can be defined in the case of stateful firewalls as
well. In this section, we give the definitions of these in-
consistencies and inefficiencies.

We use the following notation: Let R be a ruleset
that consists of stateless rules r;= <P;, action;>, where

= (prot, srcaddr;, srcport,, dstaddr;, dstport;). We say
that (Pj O PJ)if (prot O prot;) [(srcaddr O srcaddr) L]
(sreport; O srcport;) 0 (dstaddr O dstaddr) 0 (dstport
O dstport). Srmrlarly, (P.n P; #0)if (prot; n prot; # 0) H
(srcaddr; n srcaddr; # 0) (srcport; n srcport; # 0) [
(dstaddr; n dstaddr; ¢ 0)] (dstport; n dstport; # 0).

Arule is shadowed by a preceding rule if it is a sub-
set of the preceding rule; and the two rules define dif-
ferent actions:

Definition (Shadowing) Rule (r; = <P;, action; >) O R
shadows rule (r; = <P;, action;>) U R if and only if (i < j)
0 (P 0Py [(act/on 7& action) where i and j denote the
order of rules in a ruleset R.

Arule is a generalization of a preceding rule if it is
a superset of the preceding rule and the two rules
define different actions:

VOLUME LXIV. » 2009/11

Definition (Generalization) Rule (r; = <P;, action; >) O
R is the generalization of rule (r; = <P;, action;>) O R if
and only if (i > j) il (PO Py) 0 (acz‘/on # actiom).

Two rules are correlatlng if their intersection is not
empty, they are not related by the superset or subset
relations, and they define different actions. Packets
that match the intersection will take the action of the
preceding rule:

Definition (Correlation) Rule (r; = <P;, action;>) O R
and (r; = <P;, action;>) U R are correlating if and only if
(P n P ¢0) D(P o P)D(P 0 py) U (action; # action)).

A rule is redundant if the removal of it would not
affect the operation of the firewall. In case of masked
redundancy (defined below) the successor rule is un-
necessary, while in case of partially masked redun-
dancy (also defined below) the preceding rule is unne-
cessary:

Definition (Redundancy) Rule (r; = <P;, action;>) 0 R
is redundant with respect to rule (r; = <P;, action;>)0 R
if and only if at least one of the following two conditions
are satisfied:

Masked redundancy:

(P, 0 Py, where (i > j) L (action; = action))

Partially masked redundancy:

(P, 0 P)), where (i < j) U (action; = action))

Note that not all these inconsistencies and redun-
dancies are equally critical. Usually, only shadowing
is considered to be a configuration error, while genera-
lization and correlation are in fact often used by fire-
wall administrators to make a ruleset compact. Never-
theless, it may be the case that some of the generali-
zations and correlations are not intentional, in which
case, it is useful to detect them and let the administra-
tor decide if they are harmful or not. Redundancy is not
considered a serious configuration error either, but re-
dundant rules are clearly useless, therefore, it is worth
identifying and removing them, and increasing the effi-
ciency of filtering by doing so.

3. Connection-tracking with iptables

In order to understand the model described in the next
section, we shortly review how connection-tracking works
in iptables, a stateful firewall that we used in our work.
Other stateful firewalls work in a similar manner.

Iptables defines tables and chains to complete cer-
tain operations on packets at different points of the
checking. We consider only the input and output chains,
and the filter table for demonstration purposes. An ex-
tensive description of iptables can be found in [15].

Connection-tracking is the basis of stateful fire-
walls. It refers to the ability to maintain state informa-
tion about a connection as an entry in a state table. En-
tries are inserted in and removed from the state table
according to the packets the firewall is examining. For in-
stance, we demonstrate how connection-tracking tracks
a TCP connection establishment.

INFOCOMMUNICATIONS JOURNAL

Suppose we have the following rules in the output
and input chains of the filter tables, respectively:

1. iptables —A OUTPUT -p tcp -m state
—state NEW, ESTABLISHED -j ACCEPT,

2. iptables —A INPUT -p tcp -m state
—state ESTABLISHED -j ACCEPT.

Connection-tracking classifies each packet as being
in different states: NEW (if the packet initiates a new
connection), ESTABLISHED (if the packet is associated
with a connection that has encountered packets in both
directions), RELATED (if the packet initiates a new con-
nection, but also associated with an already establis-
hed connection), INVALID (not part of an existing con-
nection). For instance, the second rule above means
that only packets that belong to an established con-
nection are permitted to enter the network.

Once a syn packet that initiates a TCP connection
is sent in the output chain, and accepted by the first
rule above that allows a NEW connection, the following
connection table entry is created:

tcp 6 54 SYN _SENT src=10.0.0.1 dst=154.32.43 .44
sport=1506 dport=22 [UNREPLIED]
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1

Here, tcp refers to the protocol of the connection
(and 6 is its numerical form), the remaining time before
removal of this entry is 54 seconds, SYN SENT is the
tcp state of the connection, src and dst are the source
and destination IP addresses, sport and dport are the
source and destination ports of the connection, and
UNREPLIED refers to the connection-tracking state of
the connection. In the following, the addresses and ports
are listed in reverse order for the response traffic.

When a syn+ack packet arrives, the entry in the con-
nection tracking table is modified as follows:

tcp 6 60 SYN _RCVD src=10.0.0.1 dst=154.32.43.44
sport=1506 dport=22
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1

One can see that the TCP connection state changes
to SYN RCVD, while the tracked connection-state chan-
ges from NEW to ESTABLISHED. Note that the tracked
connection states (NEW, ESTABLISHED, etc.) are different
from the TCP connection establishment states (SYN SENT,
SYN RCVD, etc.).

Finally, when the last part of the three-way TCP connec-
tion establishment handshake, an ack packet arrives
from the server, the connection-tracking entry becomes:

tcp 6 43 1995 ESTABLISHED src=10.0.0.1 dst=154.32.43.44
sport=1506 dport=22 [ASSURED]
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1

The TCP state of the connection is altered to ESTAB-
LISHED and the connection-tracking state of the con-
nection is modified to ASSURED. ASSURED connections
are not dropped from the state table when the connec-
tion is overloaded. Note that the remaining time value
is increased to a previously defined timeout value.

4. Verification of stateful firewalls

In case of a stateless firewall, inconsistencies and in-
efficiencies between rules can be detected by means
of static analysis of the ruleset. In case of a stateful fire-
wall, the detection appears to be harder, because the
static analysis has to be performed in all possible sta-
tes of the firewall in order to be sure that the ruleset
always remains consistent. In this section, we show
that this is indeed not the case, and it is sufficient to
verify a single designated state for inconsistencies in
order to prove that the firewall’s rule set is consistent
in all possible states.

For doing so, we must first introduce the notion of
firewall state:

Definition (Stateful rules) A firewall rule is said to be
stateful if it defines state information, and is presented
in the form <P, action, stateinfo>.

Definition (Firewall state) The states of a firewall
includes all the static firewall rules and those dynam-
ic (stateful) rules that have an associated entry in the
connection-tracking table.

As an example, let us consider the following rule set,
where the first three rules are dynamic (stateful) rules
and the fourth rule is a static rule:

Rule 1: iptables —A OUTPUT —s 10.0.0.1

—dport 80 —m state — state NEW, ESTABLISHED —j ACCEPT
Rule 2: iptables —A OUTPUT —s 10.0.0.1

—dport 443 —m state — state NEW, ESTABLISHED —j ACCEPT
Rule 3: iptables —A OUTPUT —s 10.0.0.1

—dport 22 —m state — state NEW, ESTABLISHED —j ACCEPT
Rule 4: iptables —~A OUTPUT —s 10.0.0.1

—dport 22 —j DROP

In addition, let us suppose that the following two ent-
ries have been created in the connection-tracking table
(as the result of processing some packets earlier):

1. tcp 6 54 SYN_SENT src=10.0.0.1
dst=154.32.43.44 sport=6322 dport=80 [UNREPLIED]
src=154.32.43.44 dst=10.0.0.1 sport=80 dport=6322 use=1

2. tcp 6 432 ESTABLISHED src=10.0.0.1
dst=154.32.43.44 sport=1506 dport=443
[ASSURED] src=154.32.43.44 dst=10.0.0.1 sport=443
dport=1506 use=1

As one can see, in this state, Rules 1 and 2 have as-
sociated entries in the connection-tracking table, while
Rule 3 has no such entry. This means that in this state,
no packet can match Rule 3, and therefore, it can be
ignored. At the same time, packets may match Rules 1
and 2, due to the entries in the connection-tracking
table, and packets may also match Rule 4, as it is a
static rule (i.e., independent of any states). For this rea-
son, Rules 1, 2, and 4 must be considered in this parti-

VOLUME LXIV. = 2009/11

Consistency verification of stateful firewalls...

Ruleset state —s,5
AN
o . 1.<P,,ACCEPT,ESTABLISHED> %
< | 9 || 2.<P, ACCEPT,NEW,ESTABLISHED> || & ek
O P 1
5| * || 3.<P,,DENY,RELATED> ZT =
-1 —_—
o | * || 4.<P,,DENY,NEW> R s, | | k=5,15]=2¥
0 5.<P.,DENY,NEW,ESTABLISHED> \
A D
- S..
6.<P,,DENY> % 322 | Vv
7.<P,,DENY> o
w
8.<P;, ACCEPT> =
9.<P,,ACCEPT> 0 a
Figure 1. Encoding the firewall state as a binary vector

cular state. This means that, essentially, the state of the
firewall can be represented by those three rules.

It is natural to encode such a firewall state as a bi-
nary vector the length of which is equal to the number
k of the dynamic (stateful) rules in the rule-set. This is
illustrated in Figure 1. It trivially follows that the num-
ber of all possible firewall states is 2k.

We can now introduce a partial ordering < on the
set S of all possble states:

Definition (Partial ordering of firewall states) Let s
and s’ be two states of the same firewall (i.e., two bina-
ry vectors of the same length). We have s < s’ if all the
dynamic rules that are included in s are also included
in s’. In other words, if the i-th element of the binary vec-
tor corresponding to s is 1, then the i-th element of the
binary vector corresponding to s’is also 1.

The key idea of our work is that we show that when-
ever s £ s’, the number of inconsistencies in s cannot
be larger than the number of inconsistencies in s”. The
next theorem states this for the number of shadowings:

Theorem (Shadowing) Let s and s’ be two states of
the same firewall such that s < s’. The number of sha-
dowings in s cannot be larger then the number of sha-
dowings in s’.

Proof: Without loss of generality, we can assume that
the i-th stateful rule r; of the firewall rule-set is included
in s, otherwise s’contains no stateful rules, which means
that s=s’, and the statement of the theorem follows tri-
vially. Let us denote by s "the state that we obtain from
$’by removing rule r;.

VOLUME LXIV. » 2009/11

Now, if there exists a (stateful or stateless) rule r; of
the same firewall, such that either r; shadows r; or r;sha-
dows r; then removing r;from s’and obtaining s” sure-
ly decreases the number of shadowings. Otherwise, if
no rule shadows r; and no rule is shadowed by r;, then
removing r;from s’and obtaining s “does not affect the
number of shadowings.

As state s can be obtained from s by iteratively re-
moving from s’the dynamic rules that are not contain-
ed in s, the statement of the theorem can be obtained
by iteratively using the above argument. &

Similar theorems can be stated and proven in the
same way for the other types of inconsistencies and
inefficiencies (see [14] for details). This leads to the fol-
lowing main theorem:

Theorem (Reduction to the stateless case) Let s,
be the state that contains all dynamic rules of the rule
set. If no inconsistencies and inefficiencies exist in state
Sai1, then all states are free from inconsistencies and
inefficiencies, and hence, the firewall configuration is
correct.

Proof: Immediately follows from the fact that s < 5,4
for any state s of the firewall. #

The consequence is that it is sufficient to verify the
firewall in state s,,4 for inconsistencies, and this can
be done by using any static analysis tool.

Note that for the sake of this static analysis, the dy-
namic rules are converted to static rules by ignoring
those parts of their predicate that refer to some state
information.

INFOCOMMUNICATIONS JOURNAL

5. Implementation

In our implementation, we used the approach called
FIREMAN [7], which applies static analysis techniques
to check misconfigurations, such as policy violations, in-
consistencies and inefficiencies in individual firewalls
as well as in distributed firewalls using symbolic model
checking and Binary Decision Diagrams (BDD). Based
on the concepts of FIREMAN, we implemented the me-
thodology of stateful verification described in the pre-
vious chapter as a software tool. In the rest of this sec-
tion, we briefly explain the operation of FIREMAN, and
hence, our tool.

Inspired by the successfully applied software imp-
lementations of the previous works [1,7] a new applica-
tion was implemented in C# that is capable of verifying a
stateful firewall configuration. First of all, this tool builds
upon the methodology of the aforementioned works, but
uses its own Binary Decision Diagram class, to make cal-
culations (union, intersection, subset) on IP ranges as
quickly as possible.

Binary Decision Diagram is a data structure which
can represent Boolean functions. It is a rooted, acyclic,
directed graph which comprises several non-terminal
(decision) nodes and terminal nodes with assigned va-
lue either 1 (the Boolean function is true) or 0 (the Boo-
lean function is false). When an IP range is presented
in BDD form, the number of non-terminal nodes is given
by the length of the corresponding netmask. Each de-
cision node is one of the variables of the Boolean func-

tion. Interested redears are referred to [7,14] for more
details and examples.

In the following, the functioning of the application is
presented. First and foremost, a valid iptables rule file
has to be opened. Right after it, the application parses
the rules of the file one-by-one, and tries to recognize
the given parameters and their values. If a suggested
parameter is not set, then default values are used in-
stead.

An example is when one does not specify explicitly
the destination port in a corresponding rule. In this case,
all packets carrying one of the valid ports in the range
[1, 65535] are accepted. When one rule is parsed then
it is compared against with the already stored preced-
ing rules at once. This is the task of the static analysis
method that was previously mentioned. Naturally, the
trivial translation of stateful rules into stateless ones
is done when the current rule has state information.

According to the definition of firewall state, there is
no need to distinguish rules with different state informa-
tion (NEW, ESTABLISHED, RELATED, etc.), so they are hand-
led uniformly. As it was explained previously, there is
only one state s,,.4, which contains all the stateful (and
stateless rules), that has to be checked. There are two
internal lists defined, where the parsed rules are put:
AcceptList and DenyList, where AcceptlList contains
rules with action ACCEPT and DenyList stores rules with
action DENY. Note that iptables defines two declining
action values: REJECT and DROP. In fact each of them
refers to the internal representation of DENY.

@ Yerification of Statful Firewalls

File Check

=0l x|

— Output display

Protacal: tep
Action: DENY
Source IP; 0.0.0.0/0
Source Port: any
Destination IP: 152.66.243.128/27
Destination Port: any

Rule number: 20
Protocal: top
Action: DENY
Source IP: 0.0.0.0/0
Source Part: any
Destination IP: 0.0.0.0/0
Destination Port: any

Rule humber: 21
Protocal: tep
Action: DENY
Source IP: 0.0.0.0/0
Source Port: any
Destination IP: 152.66.243.128/27
Destination Port: any

Shadowing:

—Rule statistics

Mumber of rules: 69

Number of statesless rules: 69

MNumber of stateful rules: 0

—State statistics

MNumber of states: 1

—Anomaly statistics

MNumber of shadowings: 155 Figure 2.

Screen shot of
the prototype
implementation

MNumber of generalizations: 14
MNumber of correlations: 15

Number of redundancies: 434

- |ElsHES:

To be on the safe side

VOLUME LXIV. = 2009/11

Consistency verification of stateful firewalls...

The pseudo-code in Table 1 demonstrates the core
of stateful verification.

Stateful Verfication(String firewallRuleFile){
struct Rule |
Boolean isStateful: Boolean isInBitVector: String protocol:
BDD sourcelP:
BDD destinationlP: Port sourcePort:
Port destiantionPort; String action:
String stateInformation: Intcger numberOfRule:
1
'
Rule ruleSetfNUMBER_OF RULES];
ruleset = MakelnternalRepresentation(firewallRuleFile):
forall (Rule rule in ruleset) {
if (rule.isStateful == true) §
rule.isInBitVector = true:

;

1

i)
RunStatelessAnalvsis(ruleSet):

Table 1. The pseudo code of stateful verification

It is essential to put efforts on the demonstration of
the application by verifying firewalls that are used in
practice. In order to satisfy these kind of requirements
two firewalls at BME are analyzed by means of the im-
plemented tool. The machine that we used for the veri-
fication was an IBM Thinkpad R40 notebook with Intel
Pentium 4-M processor and 512 MB DDR RAM.

As Figure 2 shows, many inconsistencies and inef-
ficiencies have been found among the firewall rules. In
detail, there are around 70 firewall rules among which
there are 155 shadowings, 14 generalizations, 15 corre-
lations and 434 redundancies. The verification time need-
ed to discover all these inconsistencies and inefficien-
cies required less than 4 sec.

6. Conclusions and future work

So far, formal methods have been considered only for
the verification of stateless firewall. In this paper, we
proposed, for the first time, a formal verification method
for stateful firewalls.

Our contributions are three-fold. First, we introdu-
ced a modelling technique for states, and defined the
notion of inconsistency in case of the stateful environ-
ment. Second, we reduced the problem of verifying a
stateful firewall to the problem of verifying a stateless
firewall. More specifically, we proved that if the firewall
configuration is free from inconsistencies and ineffici-
encies in a designated state, then it is free from these
anomalies in all states. Third, we implemented our app-
roach as a prototype stateful firewall verification tool,
and used it for verifying real firewalls used in practice.
Our experiments show that the tool is effective and effi-
cient.

Regarding future work, there are many possible im-
provements that are yet to be done. Our approach could
be extended to distributed firewalls, where multiple fil-
ters organized in some topology must function together
without anomalies. It would also be interesting to ex-

VOLUME LXIV. » 2009/11

tend this approach to the complex chain model of ip-
tables.

Finally, the implementation can be extended to sup-
port other firewall products too, such as the Checkpoint
FireWall-1 and Cisco ASA.

Acknowledgments

The work presented in this paper has been partially
supported by Ericsson through the HSN Laboratory

at the Budapest University of Technology and Economics.
Apart from this, Ericsson has no responsibility

for the content of this paper.

The authors are thankful to Boldizsar Bencséath

for his help in understanding how iptables works and for
his useful comments on firewall management in practice.

Authors

LEVENTE BUTTYAN received the M.Sc. degree in
Computer Science from the Budapest University of
Technology and Economics in 1995, and the Ph.D.
degree from the Swiss Federal Institute of Techno-
logy in Lausanne in 2002. He joined the Depart-
ment of Telecommunications at the Budapest Uni-
versity of Technology and Economics (BME) in Ja-
nuary 2003, where he currently holds a position as
an Associate Professor. His current research inte-
rests include security and privacy problems in wire-
less networked embedded systems, and the appli-
cation of formal methods in security engineering.
He has supervised several international projects
at BME (e.g., UbiSecSens, SeVeCom, EU-MESH,
WSAN4CIP), and he has been teaching courses on
network security and electronic commerce in the
MSc program. In addition, he is an Associate Editor
of the IEEE Transactions on Mobile Computing, Area
Editor of Elsevier Computer Communications, mem-
ber of the editorial board of the Infocommunica-
tions Journal in Hungary, and he was a Guest Co-
editor of the IEEE Journal on Selected Areas in Com-
munications, Special Issue on Non-cooperative Be-
havior in Networking. He is a Steering Committee
member of the ACM Conference on Wireless Net-
work Security. In the last 6 years, he served on the
Program Committee of around 30 international con-
ferences and workshops, most of which were rela-
ted to wireless network security.

GABOR PEK received the B.Sc. degree in Compu-
ter Science in 2009 from the Budapest University
of Technology and Economics, where he is current-
ly doing his M.Sc. studies. He has been working
on his project laboratories on several fields of se-
curity in collaboration with Levente Buttyan and
his group for 1,5 years. In addition, he has experi-
ence in ethical hacking and forensics and was ac-
tive on several industrial projects. His work on the
analysis of stateful firewalls was awarded at the
scientific student conferences (TDK) at the univer-
sity and at the national levels. He also has interna-
tionally accepted publications in robot navigation
algorithms. Currently, he is interested in malicious
codes, botnets and mobile security.

TA VINH THONG received the M.Sc. degree in Com-
puter Science from the Budapest University of Tech-
nology and Economics (BME). Since 2008, he has
been working as a PhD student in the Laboratory
of Cryptography and System Security (CrySyS),
Department of Telecommunications, BME. His re-
search interest is analyzing security systems us-
ing formal methods, especially, formal analysis of
security protocols. His current research activities
are formal verification of MANETs and formal lan-
guages.

INFOCOMMUNICATIONS JOURNAL

References

[1] E. Al-Shaer and H. Hamed,
“Design and Implementation of
Firewall Policy Advisor Tools.”
Technical Report CTl-techrep0801,
School of Computer Science Telecommunications
and Information Systems, DePaul University,
August 2002.

[2] Ehab S. Al-Shaer and Hazem H. Hamed,
Firewall policy advisor
for anomaly discovery and rule editing.
In: Integrated Network Management,
pp.17-30, 2003.

[3] Ehab Al-Shaer and Hazem Hamed,
Management and Translation of
Filtering Security Polices,
IEEE 1CC’03, May 2003.

[4] Ehab Al-Shaer and Hazem Hamed,
Modeling and Management of Firewall Policies,
IEEE Transact. on Network and Service Management,
Vol.1, April 2004.

[5] Ehab Al-Shaer, Hazem Hamed,
Raouf Boutaba and Masum Hasan,
Conflict Classification and Analysis of
Distributed Firewall Policies,
IEEE Journal on Selected Areas in Communications,
Issue 10, Vol. 23, pp.2069-2084,
October 2005.

[6] E. Lupu and M. Sloman,
“Conflict Analysis for Management Policies.”
In Proceedings of IFIP/IEEE International
Symposium on Integrated Network Management,
May 1997.

[7]L. Yuan, J. Mai, Z. Su, H. Chen,
C. Chuah and P. Mohapatra,
FIREMAN:
A toolkit for firewall modeling and analysis.
In IEEE Symposium on Security and Privacy,
pp.199-213, 2006.

[8] Florin Baboescu and George Varghese,
Fast and scalable conflict detection
for packet classifiers.
Computer Networks 42(6), pp.717-735, 2003.

[9] Venanzio Capretta, Bernard Stepien,
Amy Felty and Stan Matwin,
Formal correctness of conflict detection for firewalls.
In Proceedings of the ACM workshop on
Formal Methods in Security Engineering (FMSE‘07),
pp.22-30, 2007.

[10] D. Eppstein and S. Muthukrishnan,
“Internet Packet Filter Management and
Rectangle Geometry.”
In Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
January 2001.
[11] P. Eronen and J. Zitting,

“An Expert System for Analyzing Firewall Rules.”
In Proceedings of the 6th Nordic Workshop on

Secure IT-Systems (NordSec 2001),
November 2001.
[12] B. Hari, S. Suri and G. Parulkar,
“Detecting and Resolving Packet Filter Conflicts.”
In Proceedings of IEEE INFOCOM’2000,
March 2000.
[13] Mohamed G. Gouda and Alex X. Liu,
A model of stateful firewalls and its properties.
In Proceedings of the IEEE Int. Conf. on Dependable
Systems and Networks, Yokohama, Japan,
June 2005.
[14] Gabor Pék,
Security Verification of Stateful Firewalls,
Student Scientific Conference (TDK),
Budapest, 2008.
[15] Oskar Andreasson,
Iptables tutorial:
http://iptables-tutorial.frozentux.net/
iptables-tutorial.html
[16] A. Liu, E. Torng, and C. Meiners,
Firewall Compressor:
An algorithm for minimizing firewall policies.
In Proceedings of the 27th Annual IEEE Conference
on Computer Communications, 2008.

VOLUME LXIV. = 2009/11

