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The speech enhancement method, presented in this paper, is based on the concepts of reconstructed phase-space and
dimension embedding. The proposed algorithm separates the speech from noise using a non-linear transformation in a trans-
formed domain. Our recent results in case of uncorrelated, additive noise are presented in this paper.

1. Introduction

Speech enhancement is a long-standing problem in
digital speech processing [1]. Several methods for noise
suppression have been elaborated during the past three
decades. The common assumption in most cases is the
slow variation of noise parameters, corresponding to the
linear speech model.

As an example, a system worth mentioning uses an
auditory-model based filterbank with Wiener-filtering in
sub-bands [2]. According to published results these me-
thods give acceptable solutions in case of SNRs (sig-
nal to noise ratio) greater than 6...9 dB [3]. In case of
either lower SNRs or nonstationary noise the speech en-
hancement methods are based on non-linear models.
A non-linear model of human auditory system has been
applied for noise suppression in [4], while the recon-
structed phase-space representation of speech belongs
to the class of non-linear signal models [5]. The latter is
also the subject of the recent paper.

The structure of the paper is as follows. In the first
part the optimal representation of the clean speech is
reviewed, followed by the introduction of a noise sup-
pression method based on the notion of speech sub-
space. The generalised version, working in the reconst-
ructed phase space, is also introduced. Our numerical
results, achieved by realisation of the algorithm are pre-
sented in the fourth section. The paper ends with the
conclusions, acknowledgement and references.

2. Representation of the clean speech
in the transformed domain
and in the reconstructed phase space

The noise suppresion method, presented in this paper,
is based on two assumptions. The first one is the exis-
tence of the optimal representation of the clean speech,
the second one is that the concept of reconstructed
phase space is suitable for speech processing problems.

Concerning the first assumption, a vector can be form-
ed from a, speech samples of the segment under press-
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ing. If N denotes the number of samples in the segment,
the resulting vector corresponds to a vector of N dimen-
sional Euclidean-space. This vector s can be written as
a linear combination using the {t,} natural orthonormal
basis, where coefficients are the speech samples: o=
(s,t,) and the nth component of the N-dimensional t,
column vector is 1, the others are 0. According to expe-
riences in solutions of practical problems in digital speech
processing, there exists an orthonormal basis, so that
by using this ‘optimal’ basis the speech vector can be
represented with fewer components than N [6]. The op-
timality means that the speech vector in question can

be given as L-1
§=>a,-v, (1)

n=0
where {v,} denotes the optimal orthonormal basis and
L<N holds. Moreover, the representation in (1) is opti-
mal in the sense that the value of the criterion function

o 0-efer- k-
=d L{”T}‘_ = ZXI R-v,

n=L n=L
that is the mean square error is minimal (ideally L<N
and ||e||=0). By the assumtion of E{s}=0, we get R=K,
which is the covariance matrix. The solution of (1) and (2)
is the {v,} eigenvector system of the covariance matrix,
and the minimal value othe mean square error can be
written using the corresponding eigenvalues as

1©)=3 7,

n=L

(2)

where A, denotes the nth eigenvalue. The new rep-
resentation of the speech vector s can be computed as
a matrix-vector product using the matrix below

T= (Ll Ve V) e Vg l)T (3)

which has the eigenvectors in its rows correspond-
ing to eigenvalues organized in desending order.

The second assumption goes for the representation

of the speech in the reconstructed phase space. The

concept of reconstructed phase space applies to the
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motion equation of the discrete dynamical system, x,,=
E(x,), where x, and x,,1 are D dimensional points in
the phase space, E denotes a suitable mapping. The
set {x,} of phase-space points constitutes the so-called
trajectory. This trajectory cannot be observed directly,
only through the non-linear mapping x,-9(x,) — the
resulting observable real number is the speech sample
0,=9g(x,). By taking these samples in regular time inter-
vals Tyy, one finally gets the speech sample sequence
{a,}. It is provable that when the condition M>2[D+1
holds, then from the number sequence a,, the vector se-
quence {y,} can be reconstructed, which is equivalent
of the original vector sequence {x,}. The method of the
reconstruction is the so-called dimension embedding,
which results a vector

S,l(M'T): (U'n‘Dt‘uﬂ"”‘U‘n.-ll\l—l?:)- (4)

where 1>0 is the time lag (given by number of samp-
les here), and M>0 denotes the embedded dimension.
The equivalence mentioned above means that there
exists an invertible, smooth mapping h:y, (M,T) - X,
by which the two vector sequence in question can be
transformed into each other [7]. The values of the em-
bedding dimension M and time lag T can be determined
experimentally, depending on the type of the speech
technology application. According to relevant literature
the value of the embedding window ML [Ty is in the
interval of 1...5 ms [8].

3. Noise suppression
in the reconstructed phase space by
using the sub-space method

The noise suppression algorithm, which can be given by
using the concept of the reconstructed phase space, is
in essence a generalisation of an earlier method publish-
ed in the relevant literature, so the latter is reviewed first.

The basis of the method is the property of the speech
described in Section 1, namely that the speech can be
optimally represented. It means, that the N dimension-
al orthonormal basis is not necessary for the represen-
tation, but L<N dimensional orthonormal basis is enough,
and ideally the mean square error value is zero. So, the
N dimensional speech vector can be found in an L di-
mensional sub-space, titled as ‘speech-subspace’.

The noise suppression algorithm determines an es-
timated, optimal speech vector from the noisy speech
samples. Let’'s denote the noisy speech as

u=s+w (5)

where w denotes the additive noise vector, uncorre-
lated with speech. Starting from the noisy samples, it is
necessary to give an estimate of the speech §, so that
the expectation value of the norm of the diference s—§
should be minimum, that is

L“{J§ - Eu }—) min (6)
First of all — similarly to the above discussed problem
— it is necessary to determine the optimal orthonormal
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basis for the speech, however in this case only the noisy
speech vector u is known. By assuming that E{w}=0, and
using the previous assumption E{s}=0, gives E{u}=0.
Additional assumption is that the zero-mean noise is
white noise, if its covariance-matrix can be written as
K"**=g®[]L, where 0>0 and L denotes the NxN iden-
tity matrix. Because the speech and noise are uncorre-
lated, the correlation matrix of the noisy speech can be
written as a sum of correlation matrices of speech and
noise, respectively, that is

i NOISY _ E{H‘Hf}: ixnﬁ:: H 4 i NOISE (7)

holds. As it can also be proven, the eigenvectors of
the noisy and clean speech are the same. The latter pro-
perty makes it possible to determine the estimated speech
vector, because the vectors of the orthonormal basis,
necessary for the ideal representation of the speech,
can be determined from the given noisy speech samp-
les. In other words, the optimal basis {v,} can be compu-
ted from the covariance matrix of the noisy speech, so
it is not necessary to know the covariance matrix of the
clean speech. Moreover, as a consequence of the sum-
mability of the covariance matrices (7), it is provable, that
the covariance matrix of the noisy speech in the trans-
formed domain is the diagonal matrix below:

K VOISY

e, (8)
= df(lg()..“-f- o 0':).

According to our assumption described in Section 1,
the speech can optimally be represented in the sub-
space, spanned by the vectors vy,v4,...,v, _¢. In other
words, in case of noisy speech, in this sub-space both
speech and noise ‘can be found’, while in the orthogo-
nal complement, that is in the sub-space, spanned by
the vectors v ,v, ,4,...,¥N_1, ONly noise ‘can be found'.

The noise suppression algorithm should be given in
the form of a linear transformation H, that is

s=H-u. 9

A O v

The estimation error is the remainderr=s— 8. The
authors of [6] demonstrated, that the remainder signal
=} —

P=1 r (10)

has two components. One of them correlated with the
speech, while the other is correlated with the noise. Be-
cause of this the task is not only to minimize the speech-
correlated component, but to suppress the noise-cor-
related component in a prescribed manner. This prob-
lem has been solved in [6] both in time domain and in
spectral domain. Our results concerning the time domain
have been published in [9]. In spectral domain it is also
necessary to minimize the speech-correlated compo-
nent, however it is possible to specify a noise suppres-
sion condition for every spectral component. Thus, the
noise suppression problem can be formulated as a con-
strained optimization problem:

SPEECH  NOISE

(11)

SPEECH )
J (£ )T’ min
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so that:
E{ l-i ._..\'rJf.\'j-_‘ 3£ ﬂ“ .O_J} n :OLL—] i a]’ld

2 (12)
E{\xi S b :0} n=L,.N-1

The first condition is a component-wise specification
for the remainder noise in the speech sub-space with
conditions of 3,>0, respectively, while the second con-
dition is simply the zeroing the components in the noise
sub-space. The optimal transformation matrix can be gi-
ven by using the Karush-Kuhn-Tucker constraint optimi-
zation method as [6]:

H™ ZY(_TYI

2 = dlag(g“_“ ----- Enn )

JT n=01..L-1

n
0 n=L..N-1

where the column vectors of the matrix V are the ei-
genvectors. For the values of Y, two methods can be
found in [6]. In this paper the relationship below

o K0’
Vi, = EXp| — JSPEECH

L,
n

g]l.l] = 1

(14)

has been used. The degree of noise suppression can
be set up with the experimental constant of k=1, also
affecting the distorsion of the estimated speech.

The method described above can be generalised to
the case of reconstructed phase space. Namely, the
latter as a model background makes it possible to gen-
erate an M-dimensional data set from a given single
noisy vector u = s+w by using the method of dimension
embedding. Because of its construction, for the result-
ing trajectory matrix U, the following relationship holds

U, =S +W (15)

=MsN T 2wmeN T X hN
Moreover, because for every corresponding sample
the relationship u, = s,+w, holds, for the trajectory mat-
rix-based covariance matrix we obtain:
Ky =Ky +Ky

=MxN SN —MxN

(16)

where i »

=W ° =MxM

Because of this, the noise suppression procedure
above can also be applied for the estimation of the tra-
jectory matrix S . Finally, from a given trajectory matrix es-
timate it is necessary to determine a speech vector esti-
mate 8, which can be peformed based on the construc-
tion of the matrix U. This latter method differs from the
original sub-space method not only in determining the
data set necessary to determine the covariance matrix,
but in the estimation of the speech sample as well, be-
cause the phase space-based method results several
speech sample estimates for a given sample.

The trajectory matrix used in our work is based on a
periodic extension of the noisy speech segment, so eve-
ry speech sample has exactly M estimates, and the final
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estimate is their average. That is, in our case the weight-
ing matrix for the final estimate is not necessary, while
in other constructs it is needed [10]. More formally, the
element u; ; of our trajectory matrix can be given as

u. =u (17)

1] {j+rthmod W *

where N denotes the number of segment’s samples,
M denotes the embedding dimension, and T denotes
the time-lag. It is worthwile mentioning that our covari-
ance matrix also differs from the empirical Toeplitz covari-
ance matrix of [6] and from those published in [5] and [10].

4. Realisation of
the speech enhancement algorithm
and numerical results

In this work our goal was to demonstrate the method
and the algorithm, so we have analysed only one long
Hungarian sentence. The sentence was uttered by a na-
tive Hungarian male speaker, and the speech has been
sampled with 8 kHz sampling frequency followed by a
16 bit linear quantisation. The resulting speech sample
sequence was the ‘clean’ speech. However, even in this
case the value of the global SNR was 45,8 dB (com-
puted in active speech regions only). The noisy speech
has been computed using these samples by artificially
adding noise. The source of the noise samples is a part
of the RSG-10 noise database [11]. Because of the dif-
ferent sampling frequencies, a suitable re-sampling was
necessary before addition. The noise types, investigated
in this work were the following: white noise, pink noise,
high frequency channel noise. The noise level has been
set up using the energy of the clean speech, computed
in active speech regions.

The effectiveness of noise suppression has been
charecterized by the number below

SRR =1 U' 3 IQ(E.\T'!-.'!:'f 'H/EM;'.%'HM".I!.)

(Signal to Residual Ratio), where the nominator is the
speech energy in the active speech region, and the de-
nominator is the energy of the residual signal (computed
on the same index-set as the nominator).

The noise suppression has been applied to a se-
quence of overlapped speech segments, using 50% over-
lap. The segment has been windowed using a Hanning-
window before enhancement, and the final estimation
has been computed by the overlap-add re-synthesis tech-
nique. The segment length, the embedding dimension,
the time lag, the dimension of the speech sub-space and
the value of the constant K has been determined ex-
perimentally by many listening tests. The parameters Y,
necessary for the spectral method, have been estimat-
ed as follows.

The value of a2 has been estimated by the first eigen-
value of the noise sub-space, while the values of ASPEEc*
have been estimated with the difference between the
eigenvalues in the speech sub-space and the estimated
value of 0% The computation of the eigenvalues and ei-

(18)
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genvectors based on Jacobi’s algorithm, and the noise
suppression algorithm has been realised in C. Table 1
contains the numerical results obtained — they corre-
spond to those of published in the relevant literature
[5,10].

SRR (dB)
SNR (dB) | White | High frequency | Pink
noise channel noise noise
15 9.3 93 9,0
12 9,1 9,0 8,3
9 8.7 8,6 7.3
6 8.1 7.9 2.7
3 7.2 6.9 3.7
0 6,0 357 1,8
-3 4,5 4,2 0,0
Table 1.

The SRR values in cases of different SNRs and noise types
(segment length: 800 sample, embedding dimension: 20,
time-lag: 1 sample, speech sub-space dimension: 7,
empirical constant: K=5)

It is seen from Table 1, that SRR values are greater
than SNRs, only if SNRs are lower than 6 dB. The rea-
son is a property of the method itself discussed in Sec-
tion 2, namely it is not only supresses the noise, but
distortes the speech as well. The graphical illustration
of the the algorithm can be seen in Figure 1.

It impressively demonstrates the noise suppression
capability of the algorithm and also its speech distortion
effect.

5. Conclusions

We discussed a speech enhancement algorithm, work-
ing in the reconstructed phase space.

The algorithm is based on dimension embedding, and
assumes the separability the speech sub-space and the
noise sub-space in the Euclidean space, determined
by the covariance matrix of the data set after embedding.
The Euclidean space in question is spanned by the ei-
genvectors of the covariance matrix above and the eigen-
vectors have been computed using Jacobi’s algorithm.
The data set has been determined after periodic exten-
sion of the speech segment, which differs from the pub-
lished methods. That means, the so-called weighting
matrix is not necessary for the estimation of the speech
sample in our method.

The program has been tested using a Hungarian sen-
tence by artificially added noise using three noise types
and seven different noise levels. The enhancement ca-
pability has been determined numerically, the parame-
ters have been set up experimentally by many listening
tests. The best results have been achieved using the
parameters as follows: about 100 ms segment length,
50% segment overlap, Hanning window, overlap-add re-

Figure 1.
Noise suppression in case of -3dB and white noise in case of the same parameters as in Table 1.
(upper trace: original utterance, middle trace: noise speech, lower trace: enhanced speech)
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synthesis, 20 dimensional embedding space, 1 sample
time lag, 7 dimensional speech sub-space.

The values correspond well to those published in the
literature, not only in case of white noise, but in case of
high frequency channel noise and pink noise. However,
the algorithm is optimal only in case of white noise, for
other noise types it is necessary to apply a whitening
transformation.

Our further work is the automatic determination of
the values of the embedding dimension, the time-lag and
the dimension of speech sub-space, moreover the test-
ing of the method using a large noisy speech database.
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