
1. Bevezetés

Az 1946. év eleje nagy fordulatot jelentett a második
világháború nehézségeit alig-alig kiheverô emberiség
történetében: de Witt USA-beli és Bay Zoltán, magyar
kutató bejelentette, hogy radarhullámok segítségével
sikerült kapcsolatot teremteniük a Holddal. De Witt ja-
nuár 10-én, Bay Zoltán pedig tôle függetlenül február
6-án tette meg a bejelentést. Ez az esemény az embe-
riség számára azt bizonyította, hogy a megismerés ex-
perimentális lehetôségei túlnyúlnak a Föld határain [1]. 

És a kutatás itt nem állt meg, a 20. század techni-
kai fejlôdése ugyanis lehetôvé tette, hogy az ember el-
hagyhassa a földgolyót és részben Föld körüli pályán te-
gyen utazást, részben pedig – ha csak rövid idôre is –
másik égitestre tegye a lábát, miközben közelebbi és
távolabbi környezetünket ûrteleszkóp, mûholdak, tele-
spektroszkópia, vagy a Naprendszer kiválasztott bolygó-
ira küldött robotok segítségével vizsgálja. A 21. század
kezdetére az ismert világ egyre tágult és egyre növek-
vô tudásunk birtokában egyre sürgetôbbé válik több,
válaszra váró kérdés: egyedül vagyunk-e az Univerzum-
ban? A Naprendszerben, vagy azon kívül is találhatunk-
e életet? Hogyan keletkezett az élet a Földön és átte-
lepülhet-e az élôvilág egyik bolygóról a másikra?

Az ûrkutatással kapcsolatos ismereteink alapján ma
még nem tudunk pontos választ adni arra a kérdésre
[2], hogy vajon az élet egy kitüntetett helyen, közvetle-
nül (és kizárólagosan) a Földön jött-e létre, vagy pedig
az univerzumban egy (vagy esetleg több) másik égites-
ten is keletkezett, esetleg éppen most van kialakuló-
ban? Elképzelhetô az is, hogy a Földön most található
élô rendszerek elôdei a világûrön keresztül, hosszú uta-
zás után érkeztek a Földre. Az „élet” ebben az esetben
általában igen egyszerû biológiai rendszereket, több-
nyire mikroorganizmusokat (például baktériumokat, spó-
rákat, algákat) jelent, és csak kevéssé kell bonyolultabb
élôlényekre gondolnunk. 

A legegyszerûbb biológiai rendszerek kialakulásá-
hoz, létezéséhez is több feltételnek kell teljesülnie: el-
engedhetetlennek látszik a víz (elsôsorban folyékony
halmazállapotban), valamint bizonyos, a biológiai rend-
szert felépítô anyagok (szén, nitrogén, oxigén, hidrogén,
kén stb.) jelenléte a környezetben, ezen felül szüksé-
ges még az élethez megfelelô hômérséklet és elegen-
dô energia is, amely különbözô forrásokból származ-
hat. Ugyancsak fontos az élô rendszert körülvevô sta-
bil külsô környezet, ami védelmet biztosít a kozmikus
eredetû részecske-, valamint elektromágneses sugár-
zások ellen. Az ûrkutatás által életre hívott asztrobioló-
gia tudománya tûzi ki azt a célt maga elé, hogy feltárja
a különféle bolygókon uralkodó viszonyokat, vizsgálja az
élet feltételeit és igyekszik a bolygókon felderíteni az
élet esetleg rejtett jeleit. 

Az élet kialakulását, illetve létezését, az életfeltéte-
lek határait kétféle rendszerben, nevezetesen földi mo-
delleken, és in situ körülmények között tanulmányozzák.
A földi modellek rendszerint extrém környezeti adottsá-
gokkal rendelkezô természetes földrajzi helyek, mint pél-
dául az Északi-, vagy a Déli-sark jéghegyei, sziklái, só-
bányák mélye, vagy pedig mesterséges, úgynevezett
szimulációs kamrák. Az elôbbi kutatások a zord éghaj-
lati, illetve környezeti viszonyok helyszínén élô mikroor-
ganizmusokat célozzák meg, míg a szimulációs kamrák-
ban alkalmasan kiválasztott kísérleti mintákon (ismét több-
nyire mikroorganizmusokon) egy vagy több (kombinált)
környezeti paraméternek az élôrendszerekre gyakorolt
tartós, jól definiált hatását vizsgálják. A vizsgálódás ar-
ra irányul, hogy a külsô (esetleg zord) feltételek milyen
mértékben befolyásolhatják az élet lehetôségeit. 

Az in situ kutatások a naprendszeren belüli és azon
kívüli kiválasztott égitesteken, illetve a világûr bizonyos
részein zajlanak. A kiválasztást a bolygók tulajdonsá-
gaira vonatkozó elméleti megfontolások, valamint ko-
rábbi megfigyelések eredményeire alapozzák. A kísér-
leti kutatások az élet környezeti feltételeinek feltárását,
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valamint az élet jelenlegi, vagy múltbeli jelenlétére uta-
ló jeleinek kimutatását célozzák. Egy-egy ilyen expedí-
ció (in situ kísérlet) megszervezése, eszköztárának op-
timális kialakítása komoly stratégiai feladat, nem is szól-
va az óriási költségekrôl, valamint arról, hogy váratlan
nehézségek miatt a kísérlet meghiúsulhat. 

Az asztrobiológia iránti kiemelt érdeklôdést mutatja,
hogy a legutóbbi idôkben számos kutatás indult el, il-
letve indul el a Mars (pl. Mars Rover, Mars Express), a
Venus (Venus Express), a Titan (Huygens), mint az élet
lehetséges színhelyeinek tanulmányozására, és már el-
készült az ESA következô 10 éves, a 2015-2025 évek-
re szóló kutatási koncepciója (Cosmic Vision). E hosszú
távú kutatási program keretében a Naprendszeren kí-
vüli bolygókra is figyelmet kívánnak fordítani, éspedig
azoknak a bolygóknak a feltárását tekintik az egyik
kulcskérdésnek, amiken az elvi számítások alapján az
életfeltételek adottak lehetnek [3].

A következô szakaszokban áttekintést nyújtunk sa-
ját kutatásainkról, nevezetesen egy szimulációs és egy
jelenleg elôkészítés alatt álló in situ kutatásról. 

2. Földi szimuláció 

Elôször a szimulációs kutatássorozatot mutat-
juk be. Általánosan ismert, hogy az ultraibolya
(UV) sugárzás a kémiai, biokémiai folyamatok
stimulálásában, valamint az élôvilág evolúció-
jában is döntô szerepet játszott, illetve játszik.
Az ultraibolya sugárzás a 400 nm-nél rövidebb
hullámhosszúságú elektromágneses sugara-
kat jelenti, amely naprendszerünkben a Nap
sugárzásából származik. Az UV sugárzást a
hullámhosszak szerint több tartományra oszt-
juk, ezt mutatjuk be az 1. ábrán. 

Az UV sugárzás különbözô tartományairól
közismert, hogy az élet szempontjából fontos
biológiai makromolekulákra (nukleinsavak, fe-

hérjék, membránok) nézve elsôsorban nem csak stimu-
láló, hanem károsító hatást is kifejthetnek [4]. 

Földi körülmények között a légkör oxigén-, valamint
ózontartalma, sôt további légköri komponensek, mint a
kéndioxid, aeroszolok jelentôs mértékben védik az élô
világot a káros sugaraktól. Az UV tartománynak a 280-
290 nm-nél rövidebb hullámhosszúságú sugarairól van
szó. Tehát a földi légkörön kívül található élô rendsze-
rek esetében ezeknek az UV komponenseknek a bio-
lógiai hatásával is számolni kell. Ez a helyzet a világû-
rön keresztül, egyik bolygóról a másikra megvalósuló élô-
anyag-transzport, valamint például a Marson esetleg
elôforduló, jelenlegi élô, vagy valamikori élô rendszerek
esetében. A kérdés tehát úgy merül fel, hogy egy adott
élô rendszer milyen esélyekkel éli túl a sugárzás hatá-
sát egy olyan UV sugárforrás mellett, amely 280 nm-nél
rövidebb hullámhosszúságú sugárzást is kisugároz. A
kérdés megközelítésére a Mars felszínén uralkodó su-
gárzási viszonyoknak megfelelô, speciális fényforrást
konstruáltunk, és azt használtuk fel kísérleteinkhez [5]. 

A lámpa emissziós spektrumát a 2. ábra mutatja, ami-
bôl kitûnik, hogy a sugárzási térben a legrövidebb hul-
lámhosszúságú sugárzás 200 nm. Ez a spektrum meg-
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2. ábra
A marsi UV spektrum szimulációja

szaggatott vonal = 
elméleti számítások, 

folytonos vonal = 
lámpa mérések szerinti  spektruma 

1. ábra  
A napsugárzás UV spektruma: 
UV-A: 320-400 nm, 
UV-B: 280-320 nm, 
UV-C: 280 nm alatt
(a három görbe az UV sugárzást 
a tengerszinten, a sztratoszférában 
és a légkörön kívül ábrázolja)



felel a Marson uralkodó sugárzási viszonyoknak, ahol
az egyedüli fényforrás a napból származik. A napsu-
gárzás a világûrön keresztül a Mars légkörén át (amely-
nek döntô fontosságú alkotórésze a 7 mbar nyomású
széndioxid) lép a bolygó felszínére, de az igen vékony
gázrétegen keresztül a sugárzás összetétele kevéssé
változik. 

A szimulációs kísérlet azt jelenti, hogy az adott ösz-
szetételû UV sugárzás, mint egy kiválasztott környeze-
ti paraméter (adott esetben az UV fény) hatásának bio-
lógiai következményeit tanulmányozzuk. 

3. Kísérleti minták

Kísérleti biológiai rendszerként – ahogyan azt említet-
tük, – asztrobiológiai célokra gyakran használunk egy-
szerû biológiai objektumokat. Kutatásainkban két igen
egyszerû mintát használtunk: T7 bakteriofágot és egy
speciális nukleinsav-bázist, uracilt. A T7 fág egy igen jól
ismert baktérium-vírus, amely egyetlen nukleinsav- és
néhány fehérjemolekulából áll, az uracil molekula a nuk-
leinsav egyik jellemzô alkotórésze, a genetikai kód egy
eleme. Ugyanezek az alkotóelemek fordulnak elô az
élô sejtekben is, tehát a kísérleti minták relevanciája
egyértelmû. 

A 3. ábrán az említett két minta sematikus képét
mutatjuk be. Kiemeljük a bemutatott objektumok mérete
közti különbséget: egy T7 fág részecske – amely tulaj-
donképpen egy nukleoproteid óriásmolekula – átmérô-
je a milliméter 6 milliomod része (60 nm), míg egy uracil
molekula ennél jóval kisebb, a milliméternek körülbelül
százmilliomod része.

A mintákat a kísérletekhez részben oldatok (kvarc
küvettában), részben 16 mm átmérôjû kerek kvarclemez-
re rávitt vékonyrétegek formájában alkalmaztuk. A T7
fág rétegeket oldatukból centrifugálással ülepítettük a
lemezre, az uracil rétegeket pedig vákuum-párologtatá-
sos módszerrel állítottuk elô. A besugárzáshoz hasz-

nált UV fényt (marsi UV szimulációs lámpa) – a szivár-
ványhoz hasonlóan – felbontottuk 10 nm szélességû
sávokra. A Marson uralkodó UV sugártérben a biológiai
rendszerekre nézve különösen érdekes a 210 nm és a
340 nm közötti tartomány, mivel ezek a hullámhosszak
földi körülmények között nincsenek jelen. A tartományt
kilenc részre, sávokra osztottuk fel és minden egyes
sávval a mintákat egyre növekvô mértékben sugároz-
tuk be.

A besugárzás által okozott károsodást spektrofoto-
méterrel, az uracil réteg jellemzô elnyelésének változá-
sával (csökkenésével) mutattuk ki (mértük). A tapaszta-
lat szerint a változás mértéke az alkalmazott besugár-
zás nagyságával növekszik, azaz a jellegzetes elnye-
lés mértéke függ a rétegre beesô fény dózisától (ener-
giasûrûségétôl): a mért változás a beesô fény dózisának
függvénye, ez az úgynevezett dózis–hatás függvény. 

A nyert függvények (tehát összesen kilenc különbö-
zô függvény) analízisébôl hullámhossz-tartományonként
meghatároztuk az uracil molekula sérülési sebességét.
A függvények analízise alapján kimutattuk, hogy a sé-
rült uracil molekula a 210-260 nm-es hullámhossz-tarto-
mány hatására vissza is alakul ép uracillá, tehát ha 210-
260 nm közötti hullámhosszúságú UV sugarak is részt
vesznek az uracilt tartalmazó rendszerek besugárzásá-
ban, akkor mind a sérülés létrejötte, mind pedig a visz-
szaalakulása egyaránt bekövetkezhet és végülis az ép
és sérült molekulák keletkezése és visszaalakulása kö-
zött egyensúlyi állapot alakul ki.  

4. Az EXPOSE/ROSE kísérlet

Elôkészítés alatt álló in situ kutatásunk a nemzetközi
összefogással mûködô EXPOSE-R berendezésben,
a Nemzetközi Ûrállomás (International Space Station;
ISS) külsô részén, a napokban telepített Columbus mo-
dulon kap majd helyet. A kiválasztott biológiai rendsze-
rek elektromágneses (ultraibolya; UV) és kozmikus/ré-
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3. ábra
Kísérleti  objektumaink: 
a T7 bakteriofág 
és a nukleinsav alkotórész uraci l  
szerkezete sémásan



szecske sugárzásra adott válaszát, illetve
a sugárzásokból elszenvedett dózisát kí-
vánjuk tanulmányozni. A Biofizikai Kutató-
laboratórium a ROSE (Response of Orga-
nisms to the Space Environment) kutatási
konzorcium tagjaként vesz részt a kísérle-
tekben. 

A kísérlet jelenleg abban a fázisban van,
amikor az összes szükséges elôzetes vizs-
gálat (Experiment Verification Test; EVT 1-4,
valamint az Experiment Sequence Test;
EST) már sikerrel megtörtént és megvan a
minták elrendezésének, a besugárzó be-
rendezésen való akkomodációjának a ter-
ve is. A következô lépés a minták elôkészí-
tése lesz a Nemzetközi Ûrállomásra törté-
nô szállításra. A minták expozíciója a Nem-
zetközi Ûrállomáson már in situ kísérlet lesz, azonban
az elôkészületekben a DLR (Köln) földi szimulációs kam-
rájában vizsgáltuk meg azt, hogy a mintáink (T7 fág és
uracil) milyen körülmények között használhatók fel a
Föld körüli pályán, amihez a szimulációs kamrában a le-
hetséges kedvezô környezeti feltételeket teremtettük
meg. 

Az 1. táblázat foglalja össze azokat a paramétere-
ket, amik a Föld „közelében”, a világûrben uralkodó kö-
rülményeket jellemzik. 

A Nemzetközi Ûrállomás közel 300 km távolságban
kering a Föld körül, azaz az ûrállomás külsô felületén
elhelyezendô EXPOSE besugárzó berendezésre néz-
ve a „Föld körüli pálya” adatai közelítôleg érvényesek.
A táblázat adataiból kitûnik, hogy a környezeti feltéte-
lek bizony zordak, például a vákuum már itt is jelentôs,
különösen akkor, ha tekintetbe vesszük, hogy a légkört
már csupán néhányszor tízmillió oxigén és néhány mil-
lió hélium atom képezi; összehasonlításul: a földi lég-
körben egyetlen köbcentiméter levegôben néhányszor
1019 molekula található. A külsô sugárzásnak kiteendô
mintákat tehát meg kell óvni a vákuum szívó hatásától.
A probléma megoldására úgynevezett szendvicsmintát
konstruáltunk, és laboratóriumunkban el is készítettük. 

A mintatartó vázlatát a 4. ábra mutatja. A mintatartó
lapos, korong alakú, 16 mm átmérôjû szelence, az alján

kvarc, a tetején pedig kalciumfluorid lemezzel záródik.
A kvarclemezen van a fág-, vagy uracil vékonyréteg, a
kalciumfluorid fedôlemez pedig alkalmas arra, hogy az
extraterresztriális napsugarak számára átjárható legyen.
A zárás vákuumbiztos, és így lehetôség van arra, hogy
a szelence belsejét bármilyen, például semleges (nem
oxidáló) gázzal töltsük meg. 

A DLR ûrszimulációs kamrájában a ROSE konzorci-
um kísérletei részben azt vizsgálják, hogy a biológiai
rendszerek milyen feltételek mellett maradnak életké-
pesek, részben pedig a sugárzás és egyéb tényezôk
által létrehozott genetikai, biokémiai, fotokémiai válto-
zásokat tanulmányozzák. A konzorciumban a magyar
rész a PUR (Phage and Uracil Response). Ennek kere-
tében vizsgáljuk a különbözô mértékben (százszorosan,
tízezerszeresen, milliószorosan) gyengített extraterreszt-
riális UV sugárzás hatására a T7 bakteriofágok életké-
pességének a csökkenését, a T7 fág DNS-ében kelet-
kezô fotosérülések mennyiségét és minôségét, mind
pedig kitüntetetten az uracil molekula fotosérülését. Az
eddig nyert dózis-hatás függvények analízise alapján
azt reméljük, hogy az extraterresztriális térben, a föld
körüli pályán is kimutatható lesz a rövid hullámhosszú-
ságú UV sugarak károsodást visszafordító hatása. 
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1. táblázat

4. ábra
A mintatartó és alkatrészeinek fotója 

a: Alkalmazásra kész mintatartó, 
b: kvarc, vagy f luorid ablak 

(kísérlettôl függôen), 
c: viton gyûrû, 

d, e: a mintatartó felsô és alsó része, 
mindkettô rozsdamentes acélból



5. Összefoglalás

A bevezetôben felvetett kérdésekre ugyan nem várha-
tó az asztrobiológiától azonnali és teljes válasz, de az
eddigi szimulációs eredmények alapján sem lehet kizár-
ni az élô rendszerek átjutását a világûrön keresztül
egyik bolygóról (egyik ûreszközrôl) a másikra. Valamely
bolygó felszínérôl elindult, és egy másik bolygó felé
(esetleg meteoritban) tartó élô rendszert azonban szá-
mos környezeti tényezô károsító hatása fenyegethet.
E hatásokat Nicholson, Horneck és munkatársai [6]
részletesen elemezték. 

A szerzôk elvi megfontolásai, valamint modelljeik
alapján fennáll bizonyos valószínûsége annak, hogy –
megfelelô körülmények között – a zord ûrbeli feltételek
ellenére is életképes biológiai rendszerek kerüljenek
egyik bolygóról a másikra. Földi eredetû mikroorganiz-
musok egy része túlélheti az ûrbéli tartózkodást, amihez
az extraterresztriális napsugárzás rövid hullámhosszú-
ságú komponenseinek károsítást visszafordító hatása
is hozzájárulhat. Fennáll tehát annak a veszélye, hogy
a Földrôl elindított ûreszközök átvihetik a mikroorganiz-
musokat egy másik bolygóra, azaz fennáll annak a ve-
szélye, hogy naprendszerünk, illetve az univerzum bár-
melyik élettel betelepíthetô bolygóján idegen élôvilág
telepszik meg: a bolygó „fertôzôdik”. Ez a felismerés fel-
hívja a figyelmet a bolygók védelme érdekében az
ûreszközök indítás elôtti gondos sterilizálására. 

Az elôzôkbôl következik, hogy a világûrbôl esetle-
gesen bejutó idegen élô rendszerekkel szemben Föl-
dünk bioszférája is védelemre szorul, azaz a világûrbôl
visszatérô eszközök, minták gondos kezelése legalább
olyan fontos, mint a Földrôl indított eszközöké.

A szerzôkrôl

Rontó Györgyi a Budapesti Orvostudományi Egyetemen szerzett általános
orvosdoktori oklevelet. A biológiai tudomány doktora, Professor Emeritus.
Korábbi munkahelyei a Semmelweis Orvostudományi Egyetem Biofizikai és
Sugárbiológiai Intézete, az MTA TTKL Biofizikai Kutatólaboratóriuma és az
MTA Biofizikai Kutatócsoportja voltak. Jelenleg a Semmelweis Egyetem Bio-
fizikai és Sugárbiológiai Intézetében dolgozik. Kutatási témája a molekulá-
ris és globális UV dozimetria kiterjesztése. Számos tudományos pályadíjat,
kitüntetést nyert el, többek között a  „SOTE Kiváló Kutató" címet, a Magyar
Biofizikai Társaság díját, Apáczai Csere János Díjat. 

Bérces Attila tanulmányait a Babes-Bolyai Tudományegyetem Fizika karán
és az Eötvös Lóránd Tudományegyetem Fizika karán végezte. A Semmel-
weis Egyetemen szerzett Ph. D. fokozatot. Munkahelyei az MTA TTKL Biofizi-
kai Kutató Laboratórium, az MTA-SE Biofizikai Kutatócsoportja. Jelenleg egye-
temi adjunktus a Semmelweis Egyetem, Biofizikai és Sugárbiológiai Intéze-
tében. Részt vesz az MTA Társult Biofizikai Kutatócsoport munkájában.
Kutatási témája:a molekuláris és globális UV dozimetria kiterjesztése.
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