
1. Bevezetés

Korábbi vizsgálataink során egy mikrohullámú össze-
köttetéseken fellépô csillapítás idôsor generálására al-
kalmas N-állapotú Markov-lánc modell kidolgozásával
foglalkoztunk [1]. A modell paraméterei tetszôleges ren-
delkezésre álló mért vételi jelszint adatokból meghatá-
rozhatók. A generált idôsorok elsô és másodrendû sta-
tisztikái statisztikái jól közelítik a kiindulási adatsor meg-
felelô statisztikáit.

Módszerünk alkalmas a mûholdas földi mozgó rádió-
csatornán fellépô többutas terjedésbôl és árnyékolás-
ból származó sztochasztikus csillapítás modellezésére
is. Ennek bemutatására jelen cikkben a modell paramé-
tereit mûholdas földi mozgó rádiócsatornán mért adat-
sorokból határozzuk meg.

A mûholdas földi mozgó rádiócsatorna karakteriszti-
kájának vizsgálatára a DLR (Deutsches Zentrum für Luft-
und Raumfahrt, Német Légi- és Ûrközlekedési Központ)
1984 és 1987 között egy nagy kiterjedésû, különbözô
környezeteket magába foglaló mérési kampányt hajtott
végre [2]. Munkánk során egy városi és egy autópálya
környezetben végrehajtott mérések vételi jelszint ered-
ményeit használtuk fel. Az összeköttetések paraméte-
reit az 1. táblázatban foglaltuk össze. 

Mindkét összeköttetés 1.54 GHz frek-
vencián üzemel, de a mérések körülmé-
nyei különbözôek voltak. Az autópályán
az összeköttetés egyik végpontjaként a
mérést végzô gépkocsi sebessége 60
km/h volt és a mérés 81.2 percig tartott. 

A városi környezetben a gépkocsi 10
km/h sebességgel közlekedett a mérés
27.8 perces idôtartama alatt. Az össze-
köttetések másik végpontja a 24° eleváci-
ós szög alatt látszódó MARECS mûhold
volt.

1. Táblázat
A DLR által elvégzett mérések 

paraméterei

2. Az N-állapotú Markov-lánc modell

Az N-állapotú Markov-lánc modellben minden állapot egy-
egy csillapításszintet reprezentál 0.05 dB felbontással
[1,3]. Az állapotok száma ennek megfelelôen függ a ge-
nerálandó adatsorban elôforduló maximális csillapítás-
tól. A modell sematikus vázlata az 1. ábrán látható. 

Az állapotok számát N, az i. állapot valószínûségét
zi, míg az adott állapot által reprezentált csillapítást Ai
jelöli. A zi állapot valószínûségek a z

_
állapot valószínû-

ség-vektorba (1), a pi j állapotátmeneti valószínûségek
pedig az állapotátmeneti valószínûség P

=
mátrixba ren-

dezhetôk (2).
(1)

(2)

A szimulációs idôegység (STU, Simulation Time Unit),
ami megadja a két egymás után következô generált csil-
lapításérték között eltelt idôt az 1. táblázatnak megfe-
lelôen: 3,3 ms. A generált csillapítás idôsor komplemens
eloszlásfüggvénye (CCDF, Complement Cumulative Dist-
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A mûholdas földi mozgó csatornán a hullámterjedést jelentôsen befolyásolja az árnyékolás és a környezettôl nagymértékben

függô, több utas terjedésbôl származó fading. Az összeköttetések pontos méretezésének érdekében fontos ismerni a várha-

tó csillapítás éves statisztikáját. A bemutatott N-állapotú Markov modell segítségével az ilyen jellegû összeköttetéseken fel-

lépô csillapítás elsô és másodrendû statisztikája megbecsülhetô.

Lektorált



ribution Function, P(A ≥ Ai)) közvetlenül meghatározható
a modell paramétereibôl (3) segítségével, ahol  P

=T
jelöli

az állapotátmeneti mátrix transzponáltját.

(3)

A generált csillapítás idôsor fading idôtartam-statisz-
tikájának meghatározásához a modell állapotainak fa-
ding, illetve inter-fading csoportosítására van szükség.
A fading állapot egy Ai csillapítás küszöb feletti szinte-
ket reprezentáló állapotokat foglalja magában. Az így
származtatott két állapotú Markov-modell látható a 2.
ábrán. A származtatott kétállapotú Markov-modell zF és
zI fading és inter-fading állapot valószínûsége, valamint
a pIF, pFI, pFF és pII állapotátmeneti valószínûségei az
(4-6) kifejezések segítségével határozhatóak meg [4].

(4)

(5)

(6)

A különbözô csillapításszintekre és idôtartamokra ér-
telmezett fading idôtartam valószínûségek (7) segítsé-
gével számolhatók, ahol Pfd(Ai,t ) megadja az Ai csilla-
pításszinten értelmezett pontosan t másodpercig tartó
fading valószínûségét.

(7)

Megfelelô mennyiségû idôtartamra kiszámolva Pfd
(Ai,t )-t, a fading idôtartam Ai csillapításszinten értelme-
zett komplemens eloszlásfüggvénye meghatározható.

3. A modell-paraméterek 
meghatározása

A modellt leíró állapot átmeneti valószínûségek a ren-
delkezésre álló mért csillapítás adatsorok fade slope sta-
tisztikájából határozhatóak meg. A fade slope mikrohul-
lámú összeköttetések tervezésénél gyakran figyelembe
vett másodrendû statisztika, egy bizonyos csillapítás-
szinten értelmezve a fading meredekségérôl (dB/s) ad in-
formációt (8-9) [1]. A fade slope mértékegysége dB/STU,
tn jelöli az n.-ik idôpontot, míg A(tn) az n.-ik idôpontban
mért csillapítás értéket.

(8)

(9)

A fade slope mûholdas földi mozgó rádiócsatornán
különbözô csillapításszintekre kiszámított feltételes sû-
rûségfüggvényei láthatóak a (következô oldali) 3. ábrán
városi és autópálya környezetek (1. táblázat) esetére.
A városi környezetben mért csillapítás adatsort a jellem-
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1. ábra
Az alkalmazott Markov-lánc

modell tematikus ábrázolása
[1]

2. ábra
Az N-állapotú Markov-modell

felosztása 
fading és inter-fading 

állapotokra 
[4]



zô többutas terjedés miatt bekövetkezô jelenté-
keny Rayleigh-, valamint Rice-szórás következté-
ben 1 másodperc hosszú mozgó ablak kellett átla-
golni. A mérési adatsorban a feldolgozást követô-
en negatív csillapítás szintek is elôfordulnak, mert
a 0 dB csillapítás szintnek az adatsor medián ér-
tékét választottuk. Emiatt a fade slope sûrûség-
függvénye negatív csillapítás szintre is kiszámít-
ható. 

Az autópálya környezetben mért adatsor fel-
dolgozásakor elegendônek bizonyult egy 165 ms
hosszú mozgó ablakos átlagolás alkalmazása. Ez
azzal magyarázható, hogy az autópálya környe-
zetben mért adatsor jóval simább, mint a városi
környezetben mért, hiszen az autópályák mellett
ritkábbak a többutas terjedésért és az árnyéko-
lásért felelôs magas épületek, valamint más négy-
kiterjedésû terepakadályok. Amint az a 3. ábrán
is látható, a fade slope magasabb értékeket is fel-
vesz, mint a városi környezet esetében.

A fade slope Ai csillapításszintre, mint feltételre vonat-
koztatott feltételes valószínûségi sûrûségfüggvénye (Con-
ditional Probability Density Function, ) jól közelít-
hetô Gaussi-eloszlásokkal [1,4,5]. A Gaussi fade slope
modellel a fade slope sûrûségfüggvénye (10) szerint szá-
mítható.

(10)

ahol Ai az i.-ik a csillapítás szint dB-ben, 
ς a fade slope dB/STU-ban. 

A fade slope tulajdonságainak megfelelôen a sûrû-
ségfüggvény várható érték paramétere zérus. A csillapí-
tásszint függô σς(Ai) szórás egyszerû függvényekkel
közelíthetô mind a városi, mind az autópálya környezet
esetében (11) [5]. 

Az a, b, c, d, e, f, g, h, i, j paraméterek értékeit a 2.
táblázatban láthatjuk.

(11) 

A fade slope csillapítás szint függô .. sûrûség-
függvényeit (10) minden állapothoz tartozó Ai csillapí-
tásszintre meg kell határozni. Az állapot-átmeneti való-
színûségeket ez után kiszámolhatjuk azt figyelembevé-
ve, hogy pi j megfeleltethetô a valószí-
nûség értéknek [5].

4. Eredmények

Az N-állapotú Markov-modellel generált idôsorok és a
mért csillapítás adatsorok komplemens eloszlásfüggvé-
nyei a 4. ábrán láthatóak. 

4. ábra
A generált idôsor, valamint és a mért csi l lapítás adatsor

komplemens eloszlásfüggvénye 
városi (l ink 13) és autópálya (l ink 14) környezet esetén
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3. ábra
A fade slope mûholdas földi mozgó rádiócsatornán, 

különbözô csil lapításszintekre kiszámított, 
feltételes sûrûségfüggvénye 

városi (link 13) és autópálya (link 14) környezetek esetén

2. Táblázat  A Gaussi fade slope modell paraméterei



Az ábrán P a valószínûséget, A a csillapítást jelöli.
Megfigyelhetô, hogy a generált idôsor eloszlásfüggvé-
nye mindkét összeköttetés esetében jól közelíti a mért
adatsor eloszlásfüggvényét. A görbék közötti eltérés fô
oka a fade slope statisztikájának közelítô számítása.

A mért adatsor, illetve a generált idôsor esetében
számított fading idôtartam eloszlásfüggvényei az 5. ábrán
látható különbözô csillapítás szintekre kiszámolva. Az
ábrán t az idôt jelöli, míg P a valószínûséget. A mûhol-
das földi mozgó rádiócsatornán a csatorna mobil jelle-
ge miatt a gyors fading dominál, ez figyelhetô meg az
ábrán is, a fellépô csillapítás fadingek általában 70 má-
sodpercnél rövidebb idôtartamúak. Mind a városi, mind
az autópálya környezet esetében elmondható, hogy a
fading idôtartam közelítése rövid idôtartamoknál nagyon
jó, de 5 másodpercnél hosszabb idôtartamoknál a kö-
zelítés romlik. Ez elsôsorban azzal magyarázható, hogy
a mért adatsorokban a hosszabb fadingek elôfordulá-
sa ritka, így statisztikájuk pontosabb leírásához nagyobb
mennyiségû mérési adatra lenne szükség. 

5. Összefoglalás

A bemutatott N-állapotú Markov-modell elsôsorban a
mûholdas földi mozgó rádiócsatornán fellépô csillapí-
tás idôsorok generálására alkalmazható. A modell se-
gítségével generált idôsor képes a valóságos fading
folyamat statisztikailag nagyon pontosan visszaadni. Az
összeköttetések tervezésénél a fading tartalék megfe-
lelô beállításához rendkívül fontos a várható csillapítás
eloszlásfüggvényének ismerete. A generált csillapítás
idôsor elsô és másodrendû statisztikájával a mûholdas
földi mozgó rádiócsatorna elsô és másodrendû statisz-
tikája jól közelíthetô. 

A modell paramétereit közvetlenül a mérési adatso-
rok fade slope statisztikájából határoztuk meg. A fade
slope feltételes sûrûségfüggvényét Gaussi-eloszlás függ-
vénnyel közelítettük. 

5. ábra
Különbözô csil lapítás szintekre kiszámított 
fading-idôtartam diagramok 
városi (l ink 13) és autópálya (l ink 14) környezet esetén

Összehasonlítottuk a generált idôsorok és a mért
adatsorok komplemens eloszlásfüggvényét és fading
idôtartam statisztikáját. Elmondható, hogy a generált idô-
sorok elsô és másodrendû csillapítás statisztikája meg-
felelôen jól közelíti a mért adatsorok megfelelô statisz-
tikáit. 
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