
1. Introduction

During the 80’s and 90’s the 2nd version of TTCN (Tree
and Tabular Combined Notation) was used for testing te-
lecommunication systems based on the OSI Basic Re-
ference Model [1]. The TTCN-2 language had two proper-
ties that prevented it from wide acceptance: its difficult
tabular format and the limited application area. There-
fore, at the end of 90’s, ETSI started the redesign of
the language and standardization of TTCN version 3.

In the planning phase it was considered that be-
sides the recent conformance testing methods the new
language should be applicable for new types of tests,
like: interoperability testing, performance testing, robust-
ness testing and system testing.

ETSI gave up the close relationship to OSI BRM and
made it possible to test internet based protocols and
Application Programming Interfaces (API).

1.1. TTCN-3 Language
The first version of TTCN-3 (Testing and Test Control

Notation) was published as a set of ETSI standards in
2000. Since then several minor enhancements and cor-
rections have been made on the language. The latest,
third edition of the standard documents were issued in
2005 [2]. The creators of TTCN-3 tried to get rid of the
clumsy structures and thus prevent the bad reputation
of the TTCN language, which was widespread among
telecom experts since TTCN-2. This was worth the ef-
forts since the result has been a language that is easy
to understand and helps testing considerably. The tex-
tual representation and basic control statements of
TTCN-3 is quite similar to programming languages like
C/C++ so many potential users can understand the
basic language constructions without deeper TTCN-3
knowledge.

A detailed TTCN-3 introduction can be found in [3].

1.2. History of TITAN
The development of TITAN was started as an M.Sc.

thesis work in the beginning of 2000. The main goal of

the project was to create an efficient, protocol and app-
lication independent test environment, which is also ca-
pable of running performance tests. TTCN-3, which was
still under development in ETSI at that time, was a per-
fect choice as the input language of the new test tool.

The first prototype of the system was ready in less
than one year. This version supported only a subset of
TTCN-3 language features, but its architecture was very
similar to the current state [4]. Since the first release
TITAN has been under continuous development: it fol-
lows the changes of the language specification and
has more and more convenience functions. TITAN sup-
ports almost all constructs of TTCN-3 and numerous
non-standard language extensions.

The main milestones of the development were the
following:

2000: first prototype
2001: parallel and distributed test execution
2002–2003: support of ASN.1 [5]

and built-in encoders/decoders
2004: graphical user interface
2005: full TTCN-3 and ASN.1 semantic analysis

2. Structure of TITAN

TITAN uses C++ as intermediate language for realiza-
tion of the TTCN-3 test system. The block diagram of
TITAN test execution environment can be seen in Fi-
gure 1 (next page).

TITAN consists of the following parts:

2.1. TTCN-3 and ASN.1 Compiler
The TTCN-3 and ASN.1 compiler is the largest and

most complex part of TITAN. Its tasks include the pars-
ing and analysis of the test suite and reporting the syn-
tax and semantic errors that are present in the input. If
all modules of the test suite are found to be correct the
compiler generates C++ program modules that will be
parts of the Executable Test Suite (ETS).

VOLUME LXII. • 2007/1 27

TITAN,
TTCN-3 test execution environment

JÁNOS ZOLTÁN SZABÓ, TIBOR CSÖNDES

Test Competence Center, Ericsson Hungary Ltd.
{janos.zoltan.szabo, tibor.csondes}@ericsson.com

Keywords: testing, TTCN-3, test system implementation

This paper presents the TTCN-3 test execution environment of Ericsson called TITAN. We show the internal details and the

operation of the toolset. Unique TITAN features and differences from other commercial TTCN-3 tools are discussed. As a result

of our development TTCN-3 and TITAN became a widely used test solution within Ericsson and we contributed to the TTCN-3

standardization work within ETSI. (In: 2006/9, pp.29–33.)

2.2. Base Library
The base library contains those common and static

parts of the ETS that are independent of the actual
test suite. It consists of manually written C++ code,
which is compiled into binary form in advance. The base
library comprises the C++ classes representing the ba-
sic TTCN-3 data types and the functions implementing
the built-in operations of the language (such as timer,
port, test component and verdict handling). Other aux-
iliary functions that are necessary to run the ETS (e.g.
the logging and configuration file processing routines)
are also parts of the base library.

2.3. Test Ports
TTCN-3 models all external communication between

the test system and the outside world using abstract
messages sent and received through communication
ports. The purpose of test ports is to bridge the gap
between the Executable Test Suite and the System
Under Test (SUT). In fact, the test ports are the C++
realizations of TTCN-3 communication ports in the ETS.

TITAN provides a well-defined programming inter-
face, the so-called Test Port API for handling incoming
and outgoing messages. Typical test port implementa-
tions communicate with the SUT using IP-based proto-
cols accessed through the socket API of the operating
system. The responsibility of test ports includes the en-
coding and decoding of structured, abstract TTCN-3 and
ASN.1 messages, that is, to transform them to and from
the transfer coding (i.e. binary octet streams used on
the underlying communication channels).

2.4. Utility Programs
TITAN contains several small utility programs that

make test suite development, compilation, test execu-
tion and result analysis easier. There are scripts for auto-
mated test suite launching, tools for test log post-pro-
cessing (utilities for merging, formatting and filtering log
files) and so on.

2.5. Main Controller
When a test suite requires more than one TTCN-3 test

components to be run in parallel, their operation must
be coordinated. This task is done by a dedicated appli-
cation called Main Controller (MC), which belongs to
TITAN and is independent of the actual test suite. The
MC has direct connections for supervising all other com-
ponents of the TTCN-3 test system. It contributes to the
creation and termination of test components as well as
the establishment and break-down of port connections,
among others. When running performance tests the
test system can be distributed over several networked
computers to generate high traffic load against the SUT.
In this case the load balancing between the participat-
ing tester computers is also done by the MC. To avoid
bottlenecks in the test system the MC only has central
coordinating tasks; it does not take part in elementary
test operations. Further details about TITAN’s distrib-
uted test architecture can be read in [6].

Besides, the MC has the user interface for interac-
tive test execution, which can be either command line
or graphical. The current state of the test system can
be continuously monitored and the user has the possi-
bility for intervention in test run by stopping the current
test case or starting a new one.

HÍRADÁSTECHNIKA

28 VOLUME LXII. • 2007/1

Figure 1. TITAN block diagram

3. The Operation of TITAN

3.1. Syntax and Semantic Analysis
The lexical analysis and syntax checking of input

modules are done by parsers generated with conven-
tional tools GNU flex and bison. During parsing the
compiler builds up special memory structures called ab-
stract syntax tree (AST). The integrated TTCN-3 and
ASN.1 compiler has the advantage that the different
front-ends for the two languages transform the defini-
tions into the unified structures of one common AST.
This allows the direct usage of data types and values
of protocols with ASN.1 descriptions from TTCN-3 test
suites.

The purpose of semantic analysis is to detect errors
like invalid references, forbidden operations or type cla-
shes and perform some transformations on the AST for
code generation (e.g. calculating and reducing con-
stant arithmetic expressions). TITAN compiler has a one-
pass semantic analyzer, which means the algorithm
walks through the AST only once. However, the order
in which the AST nodes are visited is influenced by the
references between the definitions. The most challeng-
ing task of semantic analyzer development was to pro-
perly identify and handle the ambiguous language con-
structs of TTCN-3 and ASN.1 that cannot be classified
during the syntax check (e.g. the start operation of TTCN-
3 can refer to a port, timer or test component with the
same syntax).

When the compiler detects a syntax or semantic er-
ror it does not stop after printing the first error message,
but keeps on analyzing to discover more errors in the
test suite. Special error recovery techniques are emp-
loyed in order to prohibit error messages whenever refe-
rences point to existing, but erroneous definitions. Other-
wise one simple fault could launch an avalanche of er-
ror messages.

3.2. Code Generation
C++ code generation is based on the AST, on which

the semantic checker has made some simplifications.
The generated code of TITAN uses static typing, which
means that every TTCN-3 and ASN.1 data type is map-
ped to distinct C++ classes. The main benefits of the
statically typed run-time environment are the high exe-
cution speed and modest memory usage, since the C++
compiler can arrange the optimal memory structures for
TTCN-3 data values and their fields. A further advan-
tage of static typing is that the type correctness of
TTCN-3 operations is checked by the C++ compiler as
well. This is an extra verification step on the entire ETS
without executing it.

The latter property of the generated code was ex-
ploited in earlier versions of TITAN where the compiler
lacked semantic analyzer. Instead of building AST the
equivalent pieces of C++ code were created immedi-
ately while parsing the TTCN-3 input. The internal inter-
faces of the run-time environment were designed in such
way that TTCN-3 semantic errors were mapped to simi-

lar kinds of faults in the output, which were caught and
reported by the C++ compiler.

The significant drawback of static typing is the large
size of the generated C++ class hierarchy. The output
generated from the data types of complex protocols
has long compilation time. The large code of data types
is compensated by mapping other TTCN-3 definitions,
such as values, data templates and behavior descrip-
tions (functions, test cases, etc.) to very compact C++
code.

In case of dynamic typing, which is used by most of
commercial TTCN-3 tools on the market, all TTCN-3
data values are constructed from the same generic
structure that can carry the values of any type. Be-
cause of this every run-time operation must examine
whether the given arguments have the correct types.
This applies to, for example, the built-in elementary ope-
ration of integer addition, which has to first ensure that
the generic structures of arguments contain numbers
rather than strings or something else. The extra tasks
of dynamic typing can result in 10 or 100 times slower
execution speed compared to TITAN.

3.3. Executable Test Suite Derivation
The entire compilation process including the trans-

lation of the test suite to C++, the compilation of gen-
erated code and test ports to binary form and the final
linking of the ETS is managed by UNIX make. A special
file called Makefile, which is interpreted by make, de-
scribes the different steps of compilation and the de-
pendencies between them. TITAN can create a Make-
file based on the list of TTCN-3 and ASN.1 modules and
test ports needed by the test suite.

Typical TTCN-3 test suites contain a lot of modules.
It can be observed that the majority of modules change
very seldom during the test development process. For
example, the modules that define the message types
of protocols will never change in normal cases. The
changes between two compilations and test runs are
usually limited to a few modules and a few lines of
TTCN-3 code within them (mostly the behavior state-
ments that describe the test cases). Since a full re-com-
pilation can take several minutes or hours in case of
complex test suites this should be avoided after minor
changes.

TITAN compiler together with the make utility sup-
ports incremental compilation. This means that the re-
sults of previous compilation are reused as much as
possible and only the updated modules are translated
to C++ and subsequently to binary code. Identification
of the modules that require re-compilation is not an
easy task in some cases.

If the definitions of a module are imported by an-
other than any change of the imported definitions will
affect the importing definitions, which can be import-
ed into a third module, and so on. So a single change
in one module can cause several modules to be re-
compiled in order to maintain the consistency of the
ETS.

TITAN, TTCN-3 test execution environment

VOLUME LXII. • 2007/1 29

Despite the above difficulties practical examples
show that the incremental build system of TITAN can
significantly decrease the compilation times and im-
prove the efficiency of TTCN-3 test suite development.

3.4. Encoding and Decoding
During test run the abstract messages to be sent to

or received from SUT must be encoded or decoded. To
make this task easier TITAN contains several built-in
codecs, which are accessible through a special C++
API. Using the built-in codec the encoding or decoding
of a message can be done in a few lines of C++ code
regardless the complexity of the data type. The encod-
ing and decoding functionality can be placed in test
ports or external functions, which are written entirely in
C++, but can be invoked from TTCN-3.

ASN.1 data types can be encoded according to the
standardized Basic Encoding Rules (BER). TITAN sup-
ports two different encoding schemes for TTCN-3 data
types: a table-based bit-oriented (RAW) and a text-ba-
sed (TEXT) one. The exact coding rules of TTCN-3 types,
which can be quite complex in case of some protocols,

are specified using the attributes of the respective type
definitions.

3.5. Graphical User Interface
TITAN contains a Graphical User Interface (GUI)

built together with the Main Controller, which provides
a user-friendly environment both for test development
and test execution.

Figure 2 shows a screenshot of the main GUI win-
dow. The left part shows the overview of the current
project (lists of TTCN-3 modules, test ports, configura-
tion files and other source files) while the right window
lets the user follow the compilation process. The ex-
ample presents the results of an incremental compi-
lation.

4. TTCN-3 Interfaces

A TTCN-3 Executable Test Suite can communicate with
the outside world via interfaces. ETSI has defined 6 in-
terfaces in 2 standards (TTCN-3 Runtime Interface, TRI

HÍRADÁSTECHNIKA

30 VOLUME LXII. • 2007/1

Figure 2. Graphical User Interface

[7] and TTCN-3 Control Interface, TCI [8]). The two TRI
interfaces (SUT Adapter and Platform Adapter) describe
the connections between the ETS and the system un-
der test as well as the operating system (e.g. timer hand-
ling). TCI contains four interfaces: Test Management (test
case execution, test suite parameterization), Component
Handling, Coding/Decoding and Logging.

These standards describe the interfaces with pro-
gramming language independent notation and give ca-
nonical C, Java and XML mappings for the data types
and procedures. The aim of the interface standardiza-
tion was to allow users to switch from one TTCN-3 run-
time environment to a tool of another vendor without
changing the application specific software modules.

At the moment TITAN does not support any of the
standard interfaces above. There are several reasons.
On one hand, in 2002-2003, when the interface stan-
dards were published by ETSI, TITAN was already a
mature and complete TTCN-3 test system with its full
featured proprietary interfaces. On the other hand, dur-
ing the development we preferred other technical as-
pects than ETSI.

Our goal was to provide an effective test system in
such a way that the users need to develop the small-
est and simplest external program modules possible.
Therefore TITAN provides only one programming inter-
face towards SUT, which is the test port interface. TI-
TAN supports the functionalities of other parts of TRI
and TCI as efficient built-in modules without public pro-
gramming interfaces.

TITAN test port interface has more advantages than
the SUT Adapter interface of TRI. A test port instance
always handles single TTCN-3 communication port and
consequently one protocol. Therefore the distribution
of messages of different protocols is solved by the in-
terface itself. In contrast, with TRI all the messages to-
ward SUT are processed by the same function of the
single adapter.

The separation of different protocols has to be im-
plemented in the adapter by the user. Whenever a new
protocol or system interface is introduced in the test sys-
tem, a new test port, like a building block, can be sim-
ply added with TITAN. However, with TRI it will be ne-
cessary to redesign the entire adapter. In addition, test
ports are more suitable for distributed performance
testing since the test ports connect the TTCN-3 paral-
lel test components directly to the SUT eliminating traf-
fic bottlenecks.

Later implementation of the standardized interfaces
in TITAN could cause difficulties, because they assume
dynamic typing and multi threaded operation. Gene-
rally the interfaces of TRI and TCI were not designed
for efficient operation so the practical advantages are
questionable in TITAN. We think it would not be possi-
ble to achieve better performance, simpler structure or
more comfortable usage compared to the existing built
in functionalities of TITAN.

5. Summary

Thanks to the development and usage of TITAN, Erics-
son has joined the TTCN-3 standardization work within
ETSI. Ericsson has submitted 196 out of the total 340
Change Requests (CRs), which represents our activity
in the field of TTCN-3 standardization. Most of our CRs
resolve ambiguous structures and conflicts in the core lan-
guage; but several extensions have also been proposed,
which made the language simpler and more usable.

TITAN is the official TTCN-3 Test Tool within Ericsson
since 2003. Since then a department with almost 40
people, the Test Competence Center is working on the
development, deployment and support of TITAN and TI-
TAN-based test solutions. Our product portfolio includes
Test Ports, TTCN-3 Protocol Modules and complete Test
Suites. Test Competence Center has customers from
Ericsson units all over the world. Although TITAN has
not been sold outside Ericsson the number of its users
has been continuously growing during the last years. Al-
most 50 Test Ports and 100 Protocol modules have been
developed for TITAN, which gives a great opportunity for
testing a wide spectrum of telecommunication systems.

References

[1] ITU-T, X.200, Information Technology –
Open Systems Interconnection – Basic Ref. Model:
The Basic Model, 1994.

[2] ETSI ES 201 873-1, v3.1.1 (06/2005)
The Testing and Test Control Notation, version 3.
Part1: Core Language

[3] Jens Grabowski, Dieter Hogrefe, György Réthy,
Ina Schieferdecker, Anthony Wiles, Colin Willcock,
“An introduction to the testing and
test control notation (TTCN-3)”,
Computer Networks, Vol. 42, Issue 3, pp.375–403.,
Elsevier North-Holland, Inc. 2003.

[4] János Zoltán Szabó,
“Experiences of TTCN-3 Test Executor Development”,
Testing of Communicating Systems XIV.,
Application to Internet Technologies and Services,
Edited by I. Schieferdecker, H. König and A. Wolisz,
Kluwer Academic Publishers, 2002.

[5] ITU-T X.680 (07-2002) Information technology –
Abstract Syntax Notation One (ASN.1):
Specification of basic notation.

[6] János Zoltán Szabó,
“Performance Testing Architecture for
Communication Protocols”, Periodica Polytechnica,
Electrical Engineering, Budapest University of
Technology and Economics, 2003. 47/1-2.

[7] ETSI ES 201 873-5, v3.1.1 (06/2005)
The Testing and Test Control Notation, version 3.
Part5: TTCN-3 Runtime Interface (TRI)

[8] ETSI ES 201 873-6, v3.1.1 (06/2005)
The Testing and Test Control Notation, version 3.
Part6: TTCN-3 Control Interface (TCI)

TITAN, TTCN-3 test execution environment

VOLUME LXII. • 2007/1 31

