Taszkok utemezése desktop-griden

FARKAS ZOLTAN

MTA Szamitastechnikai és Automatizalasi Kutaté Intézet
zfarkas@sztaki.hu

Lektoralt

Kulcsszavak: taszk-iitemezés, skalazhatosag, hierarchikus desktop-gridek

A cikk keretein beliil egy viszonylag Uj grid iranyzattal, a desktop gridekkel kapcsolatos taszkiitemezés kérdéseit mutatjuk
be. A hagyomanyos gridekkel ellentétben desktop-gridek esetén nem egy adott infrastruktiraba kildi a felhasznalé a taszk-
jait, hanem azok egy kézponti szerverre keriilnek, ahonnan az er6forrast felajanlé donorokon futé kliensek letéltik, majd fut-
tatjia azokat. Tehdt nem egy taszkhoz kereslink eréforrdast, hanem a szabad kapacitdassal rendelkezé er6forras kér futtatandé
taszkokat. A cikk soran bemutatjuk a desktop-grideket, par médszert azok skalazhatésagara, valamint bemutatjuk a hierar-

chikus desktop-gridekkel kapcsolatos ltemezési kérdéseket és lehetséges algoritmusokat.

1. Bevezetés

A hagyomanyos, szolgaltatasalapu gridek mellett egy
masik grid iranyzat mutat jelentds fejlédést: a desktop-
gridek. A szolgéltatas alapu gridekkel [1] ellentétben a
desktop-grid Iényege az asztali szamitégépek szabad
szamitasi kapacitdsanak 6nkéntes felajanlasaban és an-
nak kihasznalasaban rejlik [2]. Vagyis egy desktop-grid-
be barki beléphet. Azonban a belépés szé értelme eb-
ben az esetben mas: mig a szolgaltatasalapu gridek ese-
tén a belépd felhasznalok hasznalhatjak a rendelkezés-
re allé infrastruktarat, addig desktop-gridek esetén a
felajanlott szamitdgépek alkotjak az infrastruktarat. A ki-
hasznalt szabad szamitasi kapacitasokért a felhaszna-
I6k krediteket kapnak. A felajanlott szamitégépek ter-
mészetesen barmikor elhagyhatjak a rendszert, ebbdl
adodik a grid-jelleg. Tovabbi kiilénbség, hogy hagyoma-
nyos gridek esetén a felhasznalok tetszéleges alkalma-
zast futtathatnak a griden, desktop-gridek esetén a fut-
tathatd alkalmazasok kére korlatozott: ltaldban egy desk-
top grid egy probléma megoldasara specializalédik, igy
egy alkalmazast futtat sok kilénbdz8 paraméterrel.

A desktop-gridek idedlisak olyan probléméak megolda-
sara, melyeknél egy nagyobb feladatot le tudunk bonta-
ni nagyszamu kisebb részfeladatra, ezek eredményébdl
pedig az eredeti probléma megoldasa kdvetkeztethetd
(master-worker tipusu feladatok). Masik tipikus alkalma-
zasi feladatosztaly a parametrikus ellemzések (parameter
study alkalmazasok), ahol ugyanazt a feladatot kell na-
gyon sok, akar tobb tizezer paraméterrel lefuttatni. (ltt
jegyezzilk meg, hogy az ilyen parametrikus vizsgalato-
kat szolgaltatéi grideken is el lehet végezni [11], vagy
példaul a BME-n kidolgozott Saleve rendszerrel is vég-
rehajthatok [12].

A master-worker tipusu feladatok esetén, ha az ere-
deti probléma megoldasa nagyon hoszszu ideig futna
egy szamitégépen (akar egy klaszteren, akar egy szu-
perszamitdgépen), aprobb feladatokra leosztva viszont
a részfeladatok szamitasi igénye annyira lecsékken, hogy

LXIl. EVFOLYAM 2007/12

viszonylag révid id6 (néhany 6ra, esetleg par nap) alatt
feldolgozhaté egy hagyomanyos PC-n. Desktop-gridek-
re példak a kévetkez6 alkalmazésok: kdzel 250 orszag
masfél millié szamitdgépének kapacitasat hasznalja a
SETI@Home [3], mely a vilagdrbdl érkez6 radidjelek fel-
dolgozasat végzi. Kisebb (bar korantsem elhanyagol-
haté) volumeni projektek még az Einstein@Home [4]
és a Climateprediction.net [5]. Hazankban a nyilvanos
SZTAKI Desktop Grid (SZDG) futtat hasonléan BOINC
alapu nyilvanos projektet, melynek célja a sokdimenziés
binaris szamrendszerek megtalalasa [13]. Az algoritmust
az ELTE Komputeralgebra tanszéke fejlesztette ki és
az MTA SZTAKI-val kézdsen adaptaltak az SZDG-re.

Az emlitett projektek kézds vonasa, hogy BOINC-ra
[6] alapozva épitették fel az infrastrukturat. A BOINC a
kdévetkez8 elven mikddik: egy kézponti szerveren talal-
haté a projekthez kapcsol6do honlap, a futtatandé alkal-
mazas(ok) és az alkalmazas(ok)hoz kapcsolédé mun-
kacsomagok. A munkacsomagok kaphatnak prioritast:
nagyobb prioritasi szint beallitasaval jelezheti a desk-
top-grid adminisztratora, hogy szamara az adott munka
kiszamolasa fontosabb, mint a tébbié. A felhasznalék
egy BOINC kliens telepitésével kapcsolodhatnak a szer-
verhez (igy ajanlhatnak fel egy szamitégépet — donort),
ahonnan a kliens letélti a futtatand6 alkalmazast, vala-
mint adott mennyiségli munkacsomagot feldolgozasra.
Amint van munkacsomag, a BOINC kliens elinditja az al-
kalmazast, amely feldolgozza a munkacsomagot. A fel-
dolgozas végeztével a BOINC kliens feltélti a szamolas
eredményét a kdzponti szerverre.

Az 1. abra mutatja egy desktop-grid felépitését.

A cikk tovabbi részeiben elészor réviden bemutatjuk
az desktop-grid esetén felmerdlt taszkiitemezéssel kap-
csolatos kérdéseket és az azokkal foglalkoz6 cikkeket.
Utana bemutatunk harom médszert desktop-gridek sza-
mitasi kapacitasanak egyszer(névelésére, majd ezek
kézll egyet részletesen koriljarunk. Végul ejtiink par
sz6t a tovabbi lehetséges kutatasi iranyokrél, majd ro-
viden dsszefoglaljuk a leirtakat.

15

HIRADASTECHNIKA

Desktop Grid szerver
‘ Munka, ‘ ‘ Munka, ‘ Munka,
‘ Munka, ‘ ‘ Munka, ‘ Munka,
T
P "/ \\ N T
s - T . e / ‘\ \\\ /':‘;A‘, —
Donor \ P / \ ~ (" _Donor "\
\\‘_,_//fi ~ / \\ . \\\\ Munka, /'/‘
r{] / . T
//Vr 7\\‘\ // \ ~'\—>‘—‘ —
Donor) \
\ \ S)/ L (Donor)
e e
7 _Donor % (_ Donor N
Q, Munka, ,_‘// ‘\\\ Munka, ’|/)

1. abra A desktop grid felépitése

2. Utemezési kérdések

A legfontosabb kérdések: mit Gtemezzlnk és miért, mas-
ként: mi az (temezés célja? Az egyértelmii cél az, hogy
a még fel nem dolgozott munkacsomagokat minél el6bb
kiszamoljak a donor szamitogépek. Vagyis a munkacso-
magokat szeretnénk kiosztani olyan médon, hogy:

— a nagyobb prioritdsi munkacsomagok

elébb kerlljenek feldolgozasra,

— a donorok lehet6leg minél kevesebbet

dolgozzanak feleslegesen,

— a desktop-griden talalhaté ésszes munkacsomagot

a lehetd legrévidebb id6n belil kell feldolgozni.

A bevezetés alapjan feltehetjik még a kérdést, mi-
lyen (temezéssel kapcsolatos kérdések merllhetnek fel
desktop-gridek esetén? Tobb vonatkozasban beszélhe-
tlink Gtemezésrdl: egyrészt, kérdés, hogy mennyi mun-
kat igényeljen egy donor (pontosabban a donoron futé
BOINC kliens) [7,8].

Amikor egy donor munkat kap, a szerver megjegyzi,
hogy kinek osztotta ki a feldolgozandé adatot és kiosz-
taskor egy hatarid6t rendel a munkacsomaghoz. A meg-
adott hataridén belll vissza kell érkeznie az eredmény-
nek a szerverre, kiilénben a szerver azt feltételezi,

lenlegi BOINC implementacié elsésorban a munkacso-
magok prioritasa szerint csékkend, masodsorban a mun-
kacsomag létrehozasi ideje szerint névekvd sorrend
alapjan osztja ki a munkacsomagokat feldolgozasra.

3. Desktop-gridek skalazhatésaga

Felmerdl a kérdés, meddig névelheté egy desktop-grid
teljesitménye sima szamitégépekkel, illetve mekkora te-
her egy-egy Uj szamitdégép felajanlasa? Mint a beveze-
t6ben lattuk, egy szamitogép bekdtése par egyszer(lé-
pést igényel csupan, de szamitdgépek szazainak (pl.
klaszter) bekdtése mar idéigényes és monoton munka.
A feladat egyszer(ibbé tétele érdekében az MTA SZTA-
Kl kifejlesztett egy specialis BOINC klienst, az ugyne-
vezett klaszter klienst [9], mely hatalmas méret(klasz-
ter felajanlasa esetén is csupan egyetlen kliens telepi-
tését igényli. A telepités utan a klaszterkliens feladata,
hogy a klaszter szamitégépeire szétossza a kapott fel-
adatokat. A BOINC szerver szempontjabdl a klaszer egy
tobbprocesszoros szamitdégépként latszik és ennek meg-
felel6en is kér munkat a szervertdl. A 2. abran X’ jeldli
a szlkséges felajanlasokat klasztergépek egyenkénti,
illetve klaszterklienssel végzett felajanlasa esetén.

Tovabbi bévitési lehet6ség desktop-gridek szamita-
si kapacitdsanak ndvelésére az, ha a desktop-grideket
hierarchidba, fastrukturaba szervezziik. A strukturaban
also szinten levd desktop-grid munkat igényelhet a fe-
lette levé desktop-gridtél. igy a hierarchia alkalmazasa-
val lehet8ség nyilik arra, hogy egy desktop-grid teljesit-
ményét egy masik desktop-grid teljesitményével novel-
tette az MTA SZTAKI [10].

A 3. abra példat mutat egy hierarchikus desktop-grid
rendszerre, ahol a fels6bb szint(i desktop-gridtdl (példa-
ul egyetem egy karanak desktop-gridjét6l) munkat kér-
nek az alsébb szintl desktop-gridek (példaul az egye-
temi kar tanszékeinek desktop-gridjei).

2. abra Lehetséges klaszter-felajanlasok

hogy a donor valamiért nem tudta befejezni a fel-
dolgozast és kiosztja mas donornak a munkat. Te-
hat lényeges, hogy a donor csak annyi munkat kér-
jen, amennyit fel is tud dolgozni hataridére. Mas-
részt, egy donor tdbb desktop-gridhez is kapcso-
I6dhat, igy kérdés, hogy az egyes desktop gridek
kdzo6tt milyen aranyban ossza meg szabad szami-
tasi kapacitasat. Ezt az aranyt a donort felajanlo

Desktop Grid

beadllithatja, vagyis ha ugy érzi, hogy két (vagy tébb)
projekt kézll szamara az egyik valamiért kilénd-
sen fontos, a szabad szamitasi kapacitas nagyobb
részét ajanlhatja fel szamara. igy a hataridé be-
tartasat szorgalmazé (itemezés tovabb bonyolddik:
figyelembe kell venni az egyes projektek sulyat is.

Harmadrészt, felmeriilhet a kérdés, hogy a szer-
ver végez-e valamilyen Utemezést, azaz mely mun-

szerver fa—pm Node x _—»| Node x
L —
e e e
le | ————
T T T T T Kaszter T T T T
«— Node x'—.-i Node,_, |
Desktop Grid ’ o
szerver Node, ~ Node,_,
Node, ‘\| Node_

kacsomagokat kiildi ki el6szor feldolgozasra? A je-

16

LXIl. EVFOLYAM 2007/12

Taszkok ltemezése desktop griden

Server

Desktop Gnid Desktop Grid

- _ X 4 o

3. abra Hierarchikus desktop-grid rendszer

Tovabbgondolva a hierarchikus desktopgrid-modellt,
a fastruktura mellett lehet6ség van egyenrangu desk-
top-gridek kialakitasara, ahol az egyenrangu desktop-
gridek tetszés szerint adhatnak at egymas kéz6tt mun-
kat. Ekkor a fenti dbran lathaté als6 szint(desktop-gridek
példaul munkat cserélhetnek egymas kozt.

problémakat azonosithatjuk: tul sok/kevés munka kéré-
se fels6bb szintrél, hataridg tullépése és felsébb szin-
tekrdl szarmazd munkacsomagok kozétti kiildnbségtétel.

Az elsé probléma akkor jelentkezik, amikor egy alsébb
szintl desktop grid altal kért munka mennyisége nem
tlkrozi a desktop grid teljesitményét. Példaként a lenti
abra jeldléseit hasznalva, ha a ,B’ desktop grid kis tel-
jesitményd, de sok munkat kér az ,A’ desktop gridtdl,
akkor ezzel munkat vonhat el a nagyobb teljesitmény
,C’ desktop gridtél. Ennek ellenkez6 esete, amikor a sok
donorral rendelkezé desktop grid kevés munkat kér és
a donorok nagy része ,malmozik”.

A masodik probléma akkor jelentkezhet, amikor egy
desktop grid talvallalja magat (mert tal sok munkat kér),
és a letdltétt munkacsomagok hatarideje lejar a fels6bb
szint(desktop griden. Ezt az alsébb szintd desktop grid
egészen addig nem veszi észre, mig meg nem prébdlja
visszatélteni az eredményt felsébb szintre. Vagyis, tul sok
munka kérése esetén az alsébb szint donorjai felesle-
gesen dolgozhatnak.

Hierarchikus desktop gridek esetén kérdés, hogy ad-
junk-e prioritast a fels6bb szintr6l érkez6 csomagoknak,
illetve ha egy desktop grid tébb fels6 szinttdl is kér mun-

4. Skalazhaté desktop gridek
utemezési kérdései

Az el6z6 részben harom lehetséges mo-

dot mutattunk desktop gridek skalazasara: e g \

Desktop Grid szerver B

klaszterek illesztése, hierarchia kialakita-
sa, illetve egyenrangl desktop gridek 6sz- |
szekapcsolasa.

Klaszter illesztés esetén a klaszter kli-
ens csupan anynyiban médosul az erede-
ti klienshez képest, hogy tébbprocesszo- P
ros szamitogépkent reprezentélja a klasz- g
tert. Ebbdl a szempontbdl klaszterek ese-
tén a BOINC kliens Utemezési algoritmu- |\
sa megfeleld, hiszen az fel van készitve
tébb processzoros donorok kezelésére.

Az egyenrangu desktop gridek téma-
kére egyel6re koncepcionalisan létezik, igy

e -
R L
< Y L | CoreClient | ™~
_/"I [Donor,] Donor, | / " Desktop Grid szerver C .
- S ‘_\.‘ _‘__'___-‘ ‘II
D F N
~ / I|l i \\
f . o
DonorSJ / \ Don0r3|
L oL)
[II'I!I
~ { Y
'\.. "-‘_‘_‘.\. | I'.
EN = | 2 \|

/ L
[-,

I Desktop Grid szerver A I“

[Donor, (Donorv]

Donor,

ezen rendszeren belili taszkok temezé-
sével a cikk keretein bellil nem foglalkozunk.

Ebben a részben a hierarchiaba szervezett desktop
gridekkel kapcsolatos litemezések kérdéseit targyaljuk
részletesebben. El§szér bemutatjuk a hierarchikus kiala-
kitasbdl szarmazo Utemezési problémakat, majd bemu-
tatjuk azokat az eseményeket, amelyek egy hierarchikus
rendszer &llapotat (ez altal az temezési algoritmusok
muikodését) befolyasoljak, végil bemutatunk par tteme-
zési algoritmust, melyek hierarchikus desktop gridek ese-
tén alkalmazhatoéak.

4.1. Hierarchikus desktop gridek iitemezési problémai

Hierarchikus desktop gridek esetén jelentkezd (te-
mezési problémakat legegyszerlibben a 4. abra segit-
ségével lehet bemutatni. Az abra alapjan a kévetkez6

LXIl. EVFOLYAM 2007/12

4. abra dsztetett hierarchikus rendszer

kat, melyiket részesitse el6nyben, mely csomagjait dol-
gozza fel el6bb? A felsébb szint(desktop gridtdl szar-
maz6 munkacsomagok prioritdsa kdnnyen biztosithatd,
ha az onnan szarmaz6 munkacsomagok nagyobb prio-
ritassal kerlilnek be az alsé szintli desktop grid szerver-
re, mint barmelyik, nem fels6 szintrél szarmazé munka-
csomag prioritasa.

Hierarchikus rendszerben egy desktop grid t6bb fel-
s6bb szinthez is csatlakozhat. Ebben az esetben alkal-
mazhaté a BOINC kliens modszere: az alsébb szintl
desktop grid adminisztratora megadhatja, hogy a mun-
kacsomagok hany szazaléka érkezzen az egyes fels6bb
szint(desktop gridektdl.

17

HIRADASTECHNIKA

4.2. Hierarchikus desktop grideket befolyasold események

Szamos olyan esemény létezik, amely kézvetlen(l
moédositja egy hierarchikus rendszer allapotat, példaul:
donorok be- és kilépése, Uj munkacsomag megjelenése,
munkacsomag atadasa, munkacsomag feldolgozasa,
desktop grid be- és kilépése.

« Uj donor megjelenése egy desktop grid teljesitmé-
nyét ndveli. A donor azonnal kapcsolodik a kérdéses szer-
verhez és onnan munkat kér, melyen elkezd dolgozni.

* Donor kilépése csokkenti a desktop grid teljesitmé-
nyét. Sajnos ebben az esetben a desktop grid szerver
nem érteslil azonnal a kilépés tényérdl, vagyis ha a do-
nor kért korabban munkacsomagokat, azokat addig nem
osztja ki a szerver Ujabb donoroknak, amig azok hatar-
ideje le nem jar.

« Uj munkacsomag megjelenése tébbféleképpen hat-
hat: ha a munkacsomag prioritasa magas, akkor lehe-
t6leg minél elébb meg kell kapnia egy donornak feldolgo-
zasra. Ha nincs prioritasa, akkor bekeril a varakozasi
sor végére.

» Munkacsomag atadas akkor kévetkezik be, amikor
egy alsébb szintl desktop grid felsébb szintrél kér mun-
kat. Ekkor felsébb szinten az atadott munkacsomagok-
hoz generalddik egy hataridd, amin belll eredménynek
kell érkeznie, kiilénben feleslegesen dolgoztak az alsébb
szint(desktop grid donorjai.

 Desktop grid belépése tébbféle modon térténhet:
ha als6 szinten 1ép be egy desktop grid, akkor teljesit-
ménynovel6 szerepet tolt be. Felsébb szintre térténd be-
Iépéskor az ala bekapcsolt desktop grideknek plusz mun-
kat jelent a téle szarmazé munkacsomagok feldolgoza-
sa, vagyis az 6 szempontjukbdl sajat csomag-feldolgo-
zasi teljesitményiik csékken. Kéztes szintre is beléphet
az Uj desktop grid, ekkor szerepe kettds: fogad is és to-
vabbit is munkacsomagokat.

« Desktop grid kilépése t6bb dolgot eredményezhet.
Ha fels6 szintl desktop grid 1ép ki, akkor munka tlinik el.
Ekkor, ha als6bb szint kapott munkat, feleslegesen sza-
molja azt ki. Als6bb szint(i desktop grid kilépése azt ered-
ményezi, hogy a felsébb szintrél kiosztott munkat addig
nem kapja meg masik donor (vagy desktop grid), amig
hatarideje le nem jar.

4.3. Hierarchikus desktop gridek iitemezési algoritmusai

Ebben a részben réviden bemutatunk néhany lehet-
séges Utemezési algoritmust hierarchikus desktop gri-
dek esetére, majd elemezziik, hogyan reagalnak a ko-
rabban bemutatott {6bb allapotmodosité eseményekre.

A bemutatasra ker(l6 (itemezési algoritmusok kézds
tulajdonsaga, hogy ,lokalis” algoritmusok, vagyis nincs
ralatasuk a teljes hierarchikus rendszerre, hatékoériik az
egyes desktop gridekre korlatozédik, vagyis csak a
hozzajuk kapcsol6dd desktop gridrél rendelkeznek in-
formacioval, a felsébb szintl desktop gridek allapotarol
informéaciéjuk nincs.

4.3.1. Alapiitemezés

Ez az ,utemezési” algoritmus a SZTAKI altal létreho-
zott hierarchikus modell implementacié alapértelmezett

18

algoritmusa. Lényege a kdvetkez8: az alsé szintl desk-
top grid fix ,n’ processzorral rendelkezé donorként mu-
tatja magat a fels6bb szintek felé, azaz a felsébb szin-
tekrdl szarmazd, feldolgozas alatt levé munkacsomagok
szama maximum ,n’ lehet.

Az (itemezés tdbb korabban emlitett problémat nem
old meg: mivel el6re kotdtt a kért munkak szama, ezért
az algoritmus nem kdveti, ha a dekstop grid teljesitmé-
nye novekszik, vagy csokken. igy elképzelhets olyan ext-
rém eset (példaul Ures als6 szint(i desktop grid esetén),
amikor a frissen kapcsol6dé donorok nem kapnak mun-
kat. Ellenkez6 esetben (donorok kilépésekor), amikor a
desktop grid teljesitménye csdkken, tul sok munkat kér,
igy a fels6bb szintrél szarmaz6 munkak hatarideje rend-
re lejar: a donorok feleslegesen dolgoznak.

Amennyiben a desktop grid adminisztratora kéveti a
valtozasokat, modosithatja a kért munka mennyiségét,
de ez kils@, emberi beavatkozast igényel.

4.3.2. Donorfliggé ltemezés

Ez az Gtemezési algoritmus annyiban proébalja javi-
tani az alap Gtemezést, hogy a kért munkacsomagok
szama kdveti az als6 szintli desktop gridhez kapcsolédo
donorok szamat. Vagyis, Uj donorok belépése vagy do-
norok kilépése esetén ez j6 megoldas, az algoritmus al-
kalmazkodik a valtozashoz. Donor kilépése esetén fon-
tos, hogy a kilép& donort a felhasznaléja térélje a rend-
szerbdl, kulénben az algoritmus feltételezi, hogy a donor
még mindig dolgozik az alsé szintl desktop grid szama-
ra. Vagyis donor kilépés esetén az algoritmus (hasonl6-
an az alap Utemezéshez) emberi beavatkozast igényel
a helyes mikddéshez.

4.3.3. Aktivdonor (itemezése

A donorfligg8 Utemezési algoritmus lehetséges kie-
gészitése egy olyan sz(irés, amely csak az aktiv donorok
szamara kér munkat, azaz az olyan donorok kiszlrése,
melyek hosszabb id6 6ta nem jelentettek le kész munkat.
Két lehetdség kinalkozik a passziv donorok sz(irésére:

— a desktop grid adminisztrator adott id6kézdnként

torli azokat a donorokat az adatbazisbal,
melyek az utolsé ellenérzés éta nem toltdttek fel
eredményeket, vagy

— az (temezési algoritmus valdsitja meg a donorok

sz(rését.

Az emberi beavatkozast elkerilend célszer(i az utéb-
bi megoldast valasztani. Kérdés, mikor kell az algoritmus-
nak egy donort paszszivnak tekintenie? A passzivitas
meghatarozasa a kévetkez6k alapjan torténik: az algo-
ritmus passzivnak tekinti azokat a donorokat,

— amelyekhez nem tartozik munkacsomag,

igy kiszlrhet6ek azok a donorok, akik nem kér-
tek Ujabb munkat, tovabba

— azokat a donorokat, amelyekhez ugyan tartozik

munkacsomag, de a munkacsomag feldolgozasi
hatarideje lejart.

A fenti két feltétel vizsgalataval biztosan csak annyi
donor szamara fog munkat kérni az algoritmus, ahany
a fentiek szerint aktiv.

LXIl. EVFOLYAM 2007/12

Taszkok ltemezése desktop griden

Az aktivdonor (itemezés tehat javitja a donorfliggé
Utemezést: emberi beavatkozas nélkil képes kiszirni a
passziv donorokat, és az aktiv donorok szamatdl fig-
g6 mennyiségl munkat kér.

4.3.4. Timeout (itemezés

Az eddig emlitett alap, donorfligg6 és aktivdonor (te-
mezési algoritmusok mindegyike a desktop grid allapota-
t6l, pontosabban a donorok szamatél fliggé mennyiségi
munkat kért fels6bb szintrél (az alap Gtemezés bizonyos
értelemben kakukktojas, hiszen fix szamu munkacsoma-
got kér). Az emlitett algoritmusok hianyossaga, hogy nem
veszik figyelembe a felsébb szintrél kapott munkacsoma-
gok hataridejét, vagyis hidba kér annyi munkat, ameny-
nyi donor dolgozik, ha a donorok nem tudjak teljesiteni
a hatarid6ket (esetleg azért, mert a donorok nagyon
lassu szamitogépek).

A probléma kiklisz6bdlése érdekében a Timeout al-
goritmus nyilvantartja a munkacsomagok atlagos meg-
fordulasi idejét (Average Turnaround Time, ATT): a mun-
kacsomag megfordulasi idék (Turnaround Time, TT — a
munkacsomag felsébb szintrél valé letdltése és a hoz-
za tartozé eredmény visszatéltése kozotti id6) atlagat. A
timeout Gtemezés lényege, hogy az algoritmus folyama-
tosan frissiti az ATT értékét, azaz statisztikat készit a
desktop grid teljesitményébdl. Munkacsomag letdltése-
kor ellenérzi a kapott munkacsomag hataridejét. Ameny-
nyiben a kapott hataridé kisebb, mint az aktudlis ATT,
eldobja a munkacsomagot és nem kér tébb munkat. igy
azonban holtpontra juthat az algoritmus: ha nem kap
Ujabb munkat, nincs ami az ATT-t cs6kkentse. Az ilyen
helyzetek elkeriilésére az algoritmus adott id6kdzdn-
ként csOkkenti az ATT értékét. Majd ha az ATT a legu-
tolso letdltott és eldobott munkacsomag hatarideje ala
csOkkent, ismét prébalkozik munka letdltésével.

Az 5. dbra a timeout algoritmus m(ikddését mutatja.

5. dbra ATT csékkentése

4.3.5. Donortimeout algoritmus

A timeout algoritmus problémasan mikédhet abban
az esetben, ha jelent8sen eltérd teljesitmény(i donorok
tartoznak a rendszerhez. Tegylk fel, hogy két donor
dolgozik az als6bb szint(i desktop grid szamara és fel-
s6 szintrdl ugyanolyan szamitasi igényl és hataridejl
munkacsomagokat kap a desktop grid. Az egyik donor
10 perc alatt végez a munkaval, a masik 50 perc alatt,
és a munkacsomagok hatarideje 40 perc. Egyértelmd,
hogy a lassu donor sosem fog érdemben végezni egy
munkacsomaggal sem, az ATT kezdetben mégis 30
perc, vagyis feleslegesen kér az algoritmus munkat a
lassu donor szamara is.

A probléma kikiszébdlésére a donortimeout algorit-
mus donoronként tartja nyilvan az ATT értékeket, ezal-
tal elkertilhet6 a fentebb emlitett gond: az elsé donor
ATT értéke 10 perc, szamara mindig kér Gjabb munkat
az algoritmus, a lassu donor ATT-je viszont kezdett6l fog-
va 50 perc, vagyis csak azon ritka alkalmakkor fog sza-
méara munkat kérni az algoritmus, ha a hozza tartozé
ATT értékét 30 perc ala csdkkentette.

4.3.6. Varakozasi sor

Az eddig bemutatott algoritmusok figyelték a dono-
rok szamat, esetleg figyelembe vették a munkacsoma-
gok atalagos feldolgozasi idejét, a kapott munkak hatar-
idejének viszonyat. Viszont nem foglalkoznak a desktop
grid allapotaval, azon belil a helyi, még feldolgozasra va-
r6 munkakkal. Abban az esetben, ha a fels6bb szintrdl
kapott munka nem élvez prioritast a helyiekkel szemben,
feldolgozasuk csak a helyi munka utan térténik meg.

A varakozasi sor miikdédése soran figyelembe veszi
az aktiv donorok halmazat, a kapott munka prioritasat, a
kapott munka hataridejét, valamint a feldolgozasra varé
munkak halmazat. Uj munka letdltésekor prioritas szerint
sorba rendezi a 1étez6 munkacsomagokat és az aktiv
donorok ismeretében becslést ad az egyes munkak el-

végzéseének idejére (példaul pesszi-

Uj munkacsomag
hatarideje
|
‘ -
-
RS e | o

mista becslés esetén feltételezi, hogy
mindig a leglassabb donorok kapjak

ATT >= hataridé, nem
kérlink uj munkat

ATT né egy
munkacsomag
feldolgozas utan

ATT csokkentés

ATT csokkentés

ATT csokkentés

ATT < hataridé, uj
munkat kérink

LXIl. EVFOLYAM 2007/12

a munkat). Amennyiben a kapott mun-
ka nem dolgozhat6 fel hataridén be-
[ll, elveti azt és adott ideig nem is kér
munkat fels6bb szintrél.

A varakozasi sor algoritmus valé-
jaban tébb (temezést is magaba fog-
lalhat: a 1étez6 munkak feldolgozasi
idejének becslési médszerétdl fliggs-
en mas és mas (itemezési algoritmust
kapunk.

5. Osszefoglalas

A cikk keretein beliil a desktop gridek-
ben talalhaté munkak ltemezésének
kérdéseit és azok lehetséges megol-
dasait jartuk korbe. El6szér bemutat-
tuk a desktop grid fogalmat és meg-
emlitettlink par olyan eredményt, mely

19

HIRADASTECHNIKA

a munkak donor oldali itemezésével foglalkozik, vagyis
azzal a kérdéssel, hogyan végezhet§ el adott mennyi-
ségl munka hataridén belll, a szabad szamitasi kapa-
cités kihasznalasaval.

Kovetkez6 1épésként tobb mddszert is ismertettlink
a desktop gridek skalazasara: klaszter bevonasat, hier-
archikus desktop grid épitést és az egyenrangu desk-
top gridek felépitését. A harom mddszer koziil a hierar-
chikus desktop gridekkel foglalkoztunk részletesebben:
megvizsgaltuk, milyen problémakra kell odafigyelni az
Utemezés soran, bemutattuk mik befolyasoljak az lte-
mezési algoritmusokat, végil példakat mutattunk tébb
lehetséges itemezési algoritmusra, melyek tébb szem-
sz6gbdl becsllik meg a letéltendé munka mennyiségét.

Tovabbi munkak kézétt szerepel az algoritmusok tel-
jesitményének szimulacion keresztili vizsgélata, vala-
mint az egyenrangu desktop gridekkel kapcsolatos Ute-
mezés koriljarasa.

A fenti algoritmusokat az ,Uj generaciés grid techno-
l6giak kifejlesztése és meteoroldgiai alkalmazasa a kor-
nyezetvédelemben és az épuletenergetikaban” cim(
Jedlik Anyos projekt [14] keretében létrehozandé hier-
archikus SZTAKI Desktop Grid rendszerekben fogjuk al-
kalmazni. A projekten belili f6bb alkalmazasi teriletek:
a klima-modellezés és az éplletek hiltéstechnikajanak
vezérlése. Tovabbi fontos alkalmazésa lesz a kidolgozan-
dé Utemezésnek a CancerGrid EU FP6-0s projektben,
ahol rak elleni orvossagok fejlesztési idejének csokken-
tése a cél [15].

A hierarchikus SZTAKI desktop gridek megnyitjak az
utat a desktop gridek széleskdrl és skalazhatd alkalma-
zasanak iranyaba a kutatéhelyek és a vallalatok sza-
mara egyarant.

Koészonetnyilvanitas

Jelen cikkben bemutatott munka az NKFP2-00007/2005
projekt keretein belll készilt, amit a Nemzeti Kutatasi és
Technolégiai Hivatal tett lehetévé a Jedlik Anyos program
keretein belil az 0j generacios grid technoldgiak
kifejlesztésére és meteoroldgiai alkalmazasara

a kérnyezetvédelemben és az éplletenergetikaban.

Irodalom

[1] I. Foster, C. Kesselman, eds.,
The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, 1999.
[2] David P. Anderson:
Public Computing: Reconnecting People to Science,
Conference on Shared Knowledge and the Web.
Residencia de Estudiantes, Madrid, November 2003.
[3] D. P. Anderson, J. Cobb, E. Korpela,
M. Lebofsky, D. Werthimer:
SETI@home: An experiment in public-resource
computing. Communications of the ACM,
November 2002, Vol. 45, No.11., pp.56-61.
http://setiathome.berkeley.edu/
[4] http://einstein.phys.uwm.edu/

20

[5] http://climateprediction.net

[6] David P. Anderson:

BOINC: A System for Public-Resource Computing
and Storage.

5th IEEE/ACM Int. Workshop on Grid Computing,
8 November 2004, Pittsburgh, USA.

[7] Derrick Kondo, David P. Anderson, John McLeod VII:
Performance Evaluation of Scheduling Policies for
Volunteer Computing.
3rd IEEE Int. Conf. on e-Science and Grid Computing,
Banagalore, India, 10-13 December 2007.

[8] David P. Anderson, John McLeod VII:

Local Scheduling for Volunteer Computing.
Workshop on Large-Scale, Volatile Desktop Grids
(PCGrid 2007) held in conjunction with

the IEEE Int. Parallel & Distributed Processing
Symposium (IPDPS), 30 March 2007, Long Beach.

[9] P. Kacsuk, N. Podhorszki, T. Kiss:

,Scalable Desktop Grid System”, High performance
computing for computational science VECPAR’06,
Rio de Janeiro, Brazil, 10-13 July 2006, pp.1-13.
[10] P. Kacsuk, A. Marosi, J. Kovacs, Z. Balaton,
G. Gombas, G. Vida, A. Kornafeld:
SZTAKI Desktop Grid —
a Hierarchical Desktop Grid System,
Cracow Grid Workshop, Krakow, 20086.
[11] P. Kacsuk, G. Sipos, A. Téth, Z. Farkas,
G. Kecskeméti, G. Hermann:
Defining and running Parametric Study Applications
by the P-GRADE Portal.
Cracow Grid Workshop, Krakow, 2006.
[12] Zs. Molnar, . Szeberényi:
Saleve: Simple Web-Services Based Environment
for Parameter Study Applications,
6th IEEE/ACM Int. Workshop on Grid Computing,
Seattle, 2005.
[13] Burcsi Péter, Gombas Gabor, Kornafeld Adam,
Dr. Kovacs Attila, Kovacs Jozsef, Marosi Attila Csaba,
Dr. Podhorszki Norbert, Vida Gabor:
,Szuperszamitégépes teljesitmény szuperszamito-
gép nélkil — A Binsys Projekt”,
Networkshop 2006.
[14] http://www.nkth.gov.hu/main.php?folder|D=922
[15] http://www.cancergrid.eu/

LXIl. EVFOLYAM 2007/12

