
LXII. ÉVFOLYAM 2007/12 15

1. Bevezetés

A hagyományos, szolgáltatásalapú gridek mellett egy
másik grid irányzat mutat jelentôs fejlôdést: a desktop-
gridek. A szolgáltatás alapú gridekkel [1] ellentétben a
desktop-grid lényege az asztali számítógépek szabad
számítási kapacitásának önkéntes felajánlásában és an-
nak kihasználásában rejlik [2]. Vagyis egy desktop-grid-
be bárki beléphet. Azonban a belépés szó értelme eb-
ben az esetben más: míg a szolgáltatásalapú gridek ese-
tén a belépô felhasználók használhatják a rendelkezés-
re álló infrastruktúrát, addig desktop-gridek esetén a
felajánlott számítógépek alkotják az infrastruktúrát. A ki-
használt szabad számítási kapacitásokért a felhaszná-
lók krediteket kapnak. A felajánlott számítógépek ter-
mészetesen bármikor elhagyhatják a rendszert, ebbôl
adódik a grid-jelleg. További különbség, hogy hagyomá-
nyos gridek esetén a felhasználók tetszôleges alkalma-
zást futtathatnak a griden, desktop-gridek esetén a fut-
tatható alkalmazások köre korlátozott: általában egy desk-
top grid egy probléma megoldására specializálódik, így
egy alkalmazást futtat sok különbözô paraméterrel.

A desktop-gridek ideálisak olyan problémák megoldá-
sára, melyeknél egy nagyobb feladatot le tudunk bonta-
ni nagyszámú kisebb részfeladatra, ezek eredményébôl
pedig az eredeti probléma megoldása következtethetô
(master-worker típusú feladatok). Másik tipikus alkalma-
zási feladatosztály a parametrikus ellemzések (parameter
study alkalmazások), ahol ugyanazt a feladatot kell na-
gyon sok, akár több tízezer paraméterrel lefuttatni. (Itt
jegyezzük meg, hogy az ilyen parametrikus vizsgálato-
kat szolgáltatói grideken is el lehet végezni [11], vagy
például a BME-n kidolgozott Saleve rendszerrel is vég-
rehajthatók [12].

A master-worker típusú feladatok esetén, ha az ere-
deti probléma megoldása nagyon hoszszú ideig futna
egy számítógépen (akár egy klaszteren, akár egy szu-
perszámítógépen), apróbb feladatokra leosztva viszont
a részfeladatok számítási igénye annyira lecsökken, hogy

viszonylag rövid idô (néhány óra, esetleg pár nap) alatt
feldolgozható egy hagyományos PC-n. Desktop-gridek-
re példák a következô alkalmazások: közel 250 ország
másfél millió számítógépének kapacitását használja a
SETI@Home [3], mely a világûrbôl érkezô rádiójelek fel-
dolgozását végzi. Kisebb (bár korántsem elhanyagol-
ható) volumenû projektek még az Einstein@Home [4]
és a Climateprediction.net [5]. Hazánkban a nyilvános
SZTAKI Desktop Grid (SZDG) futtat hasonlóan BOINC
alapú nyilvános projektet, melynek célja a sokdimenziós
bináris számrendszerek megtalálása [13]. Az algoritmust
az ELTE Komputeralgebra tanszéke fejlesztette ki és
az MTA SZTAKI-val közösen adaptálták az SZDG-re.

Az említett projektek közös vonása, hogy BOINC-ra
[6] alapozva építették fel az infrastruktúrát. A BOINC a
következô elven mûködik: egy központi szerveren talál-
ható a projekthez kapcsolódó honlap, a futtatandó alkal-
mazás(ok) és az alkalmazás(ok)hoz kapcsolódó mun-
kacsomagok. A munkacsomagok kaphatnak prioritást:
nagyobb prioritási szint beállításával jelezheti a desk-
top-grid adminisztrátora, hogy számára az adott munka
kiszámolása fontosabb, mint a többié. A felhasználók
egy BOINC kliens telepítésével kapcsolódhatnak a szer-
verhez (így ajánlhatnak fel egy számítógépet – donort),
ahonnan a kliens letölti a futtatandó alkalmazást, vala-
mint adott mennyiségû munkacsomagot feldolgozásra.
Amint van munkacsomag, a BOINC kliens elindítja az al-
kalmazást, amely feldolgozza a munkacsomagot. A fel-
dolgozás végeztével a BOINC kliens feltölti a számolás
eredményét a központi szerverre.

Az 1. ábra mutatja egy desktop-grid felépítését.
A cikk további részeiben elôször röviden bemutatjuk

az desktop-grid esetén felmerült taszkütemezéssel kap-
csolatos kérdéseket és az azokkal foglalkozó cikkeket.
Utána bemutatunk három módszert desktop-gridek szá-
mítási kapacitásának egyszerû növelésére, majd ezek
közül egyet részletesen körüljárunk. Végül ejtünk pár
szót a további lehetséges kutatási irányokról, majd rö-
viden összefoglaljuk a leírtakat.

Taszkok ütemezése desktop-griden
FARKAS ZOLTÁN

MTA Számítástechnikai és Automatizálási Kutató Intézet
zfarkas@sztaki.hu

Kulcsszavak: taszk-ütemezés, skálázhatóság, hierarchikus desktop-gridek

A cikk keretein belül egy viszonylag új grid irányzattal, a desktop gridekkel kapcsolatos taszkütemezés kérdéseit mutatjuk

be. A hagyományos gridekkel ellentétben desktop-gridek esetén nem egy adott infrastruktúrába küldi a felhasználó a taszk-

jait, hanem azok egy központi szerverre kerülnek, ahonnan az erôforrást felajánló donorokon futó kliensek letöltik, majd fut-

tatja azokat. Tehát nem egy taszkhoz keresünk erôforrást, hanem a szabad kapacitással rendelkezô erôforrás kér futtatandó

taszkokat. A cikk során bemutatjuk a desktop-grideket, pár módszert azok skálázhatóságára, valamint bemutatjuk a hierar-

chikus desktop-gridekkel kapcsolatos ütemezési kérdéseket és lehetséges algoritmusokat.

Lektorált

1. ábra A desktop grid felépítése

2. Ütemezési kérdések

A legfontosabb kérdések: mit ütemezzünk és miért, más-
ként: mi az ütemezés célja? Az egyértelmû cél az, hogy
a még fel nem dolgozott munkacsomagokat minél elôbb
kiszámolják a donor számítógépek. Vagyis a munkacso-
magokat szeretnénk kiosztani olyan módon, hogy:

– a nagyobb prioritású munkacsomagok
elôbb kerüljenek feldolgozásra,

– a donorok lehetôleg minél kevesebbet
dolgozzanak feleslegesen,

– a desktop-griden található összes munkacsomagot
a lehetô legrövidebb idôn belül kell feldolgozni.

A bevezetés alapján feltehetjük még a kérdést, mi-
lyen ütemezéssel kapcsolatos kérdések merülhetnek fel
desktop-gridek esetén? Több vonatkozásban beszélhe-
tünk ütemezésrôl: egyrészt, kérdés, hogy mennyi mun-
kát igényeljen egy donor (pontosabban a donoron futó
BOINC kliens) [7,8].

Amikor egy donor munkát kap, a szerver megjegyzi,
hogy kinek osztotta ki a feldolgozandó adatot és kiosz-
táskor egy határidôt rendel a munkacsomaghoz. A meg-
adott határidôn belül vissza kell érkeznie az eredmény-
nek a szerverre, különben a szerver azt feltételezi,
hogy a donor valamiért nem tudta befejezni a fel-
dolgozást és kiosztja más donornak a munkát. Te-
hát lényeges, hogy a donor csak annyi munkát kér-
jen, amennyit fel is tud dolgozni határidôre. Más-
részt, egy donor több desktop-gridhez is kapcso-
lódhat, így kérdés, hogy az egyes desktop gridek
között milyen arányban ossza meg szabad számí-
tási kapacitását. Ezt az arányt a donort felajánló
beállíthatja, vagyis ha úgy érzi, hogy két (vagy több)
projekt közül számára az egyik valamiért különö-
sen fontos, a szabad számítási kapacitás nagyobb
részét ajánlhatja fel számára. Így a határidô be-
tartását szorgalmazó ütemezés tovább bonyolódik:
figyelembe kell venni az egyes projektek súlyát is.

Harmadrészt, felmerülhet a kérdés, hogy a szer-
ver végez-e valamilyen ütemezést, azaz mely mun-
kacsomagokat küldi ki elôször feldolgozásra? A je-

lenlegi BOINC implementáció elsôsorban a munkacso-
magok prioritása szerint csökkenô, másodsorban a mun-
kacsomag létrehozási ideje szerint növekvô sorrend
alapján osztja ki a munkacsomagokat feldolgozásra.

3. Desktop-gridek skálázhatósága

Felmerül a kérdés, meddig növelhetô egy desktop-grid
teljesítménye sima számítógépekkel, illetve mekkora te-
her egy-egy új számítógép felajánlása? Mint a beveze-
tôben láttuk, egy számítógép bekötése pár egyszerû lé-
pést igényel csupán, de számítógépek százainak (pl.
klaszter) bekötése már idôigényes és monoton munka.
A feladat egyszerûbbé tétele érdekében az MTA SZTA-
KI kifejlesztett egy speciális BOINC klienst, az úgyne-
vezett klaszter klienst [9], mely hatalmas méretû klasz-
ter felajánlása esetén is csupán egyetlen kliens telepí-
tését igényli. A telepítés után a klaszterkliens feladata,
hogy a klaszter számítógépeire szétossza a kapott fel-
adatokat. A BOINC szerver szempontjából a klaszer egy
többprocesszoros számítógépként látszik és ennek meg-
felelôen is kér munkát a szervertôl. A 2. ábrán ,X’ jelöli
a szükséges felajánlásokat klasztergépek egyenkénti,
illetve klaszterklienssel végzett felajánlása esetén.

További bôvítési lehetôség desktop-gridek számítá-
si kapacitásának növelésére az, ha a desktop-grideket
hierarchiába, fastruktúrába szervezzük. A struktúrában
alsó szinten levô desktop-grid munkát igényelhet a fe-
lette levô desktop-gridtôl. Így a hierarchia alkalmazásá-
val lehetôség nyílik arra, hogy egy desktop-grid teljesít-
ményét egy másik desktop-grid teljesítményével növel-
jük. A hierarchikus modell egy implementációját elkészí-
tette az MTA SZTAKI [10].

A 3. ábra példát mutat egy hierarchikus desktop-grid
rendszerre, ahol a felsôbb szintû desktop-gridtôl (példá-
ul egyetem egy karának desktop-gridjétôl) munkát kér-
nek az alsóbb szintû desktop-gridek (például az egye-
temi kar tanszékeinek desktop-gridjei).

2. ábra Lehetséges klaszter-felajánlások

HÍRADÁSTECHNIKA

16 LXII. ÉVFOLYAM 2007/12

3. ábra Hierarchikus desktop-grid rendszer

Továbbgondolva a hierarchikus desktopgrid-modellt,
a fastruktúra mellett lehetôség van egyenrangú desk-
top-gridek kialakítására, ahol az egyenrangú desktop-
gridek tetszés szerint adhatnak át egymás között mun-
kát. Ekkor a fenti ábrán látható alsó szintû desktop-gridek
például munkát cserélhetnek egymás közt.

4. Skálázható desktop gridek
ütemezési kérdései

Az elôzô részben három lehetséges mó-
dot mutattunk desktop gridek skálázására:
klaszterek illesztése, hierarchia kialakítá-
sa, illetve egyenrangú desktop gridek ösz-
szekapcsolása.

Klaszter illesztés esetén a klaszter kli-
ens csupán anynyiban módosul az erede-
ti klienshez képest, hogy többprocesszo-
ros számítógépként reprezentálja a klasz-
tert. Ebbôl a szempontból klaszterek ese-
tén a BOINC kliens ütemezési algoritmu-
sa megfelelô, hiszen az fel van készítve
több processzoros donorok kezelésére.

Az egyenrangú desktop gridek téma-
köre egyelôre koncepcionálisan létezik, így
ezen rendszeren belüli taszkok ütemezé-
sével a cikk keretein belül nem foglalkozunk.

Ebben a részben a hierarchiába szervezett desktop
gridekkel kapcsolatos ütemezések kérdéseit tárgyaljuk
részletesebben. Elôször bemutatjuk a hierarchikus kiala-
kításból származó ütemezési problémákat, majd bemu-
tatjuk azokat az eseményeket, amelyek egy hierarchikus
rendszer állapotát (ez által az ütemezési algoritmusok
mûködését) befolyásolják, végül bemutatunk pár üteme-
zési algoritmust, melyek hierarchikus desktop gridek ese-
tén alkalmazhatóak.

4.1. Hierarchikus desktop gridek ütemezési problémái
Hierarchikus desktop gridek esetén jelentkezô üte-

mezési problémákat legegyszerûbben a 4. ábra segít-
ségével lehet bemutatni. Az ábra alapján a következô

problémákat azonosíthatjuk: túl sok/kevés munka kéré-
se felsôbb szintrôl, határidô túllépése és felsôbb szin-
tekrôl származó munkacsomagok közötti különbségtétel.

Az elsô probléma akkor jelentkezik, amikor egy alsóbb
szintû desktop grid által kért munka mennyisége nem
tükrözi a desktop grid teljesítményét. Példaként a lenti
ábra jelöléseit használva, ha a ,B’ desktop grid kis tel-
jesítményû, de sok munkát kér az ,A’ desktop gridtôl,
akkor ezzel munkát vonhat el a nagyobb teljesítményû
,C’ desktop gridtôl. Ennek ellenkezô esete, amikor a sok
donorral rendelkezô desktop grid kevés munkát kér és
a donorok nagy része „malmozik”.

A második probléma akkor jelentkezhet, amikor egy
desktop grid túlvállalja magát (mert túl sok munkát kér),
és a letöltött munkacsomagok határideje lejár a felsôbb
szintû desktop griden. Ezt az alsóbb szintû desktop grid
egészen addig nem veszi észre, míg meg nem próbálja
visszatölteni az eredményt felsôbb szintre. Vagyis, túl sok
munka kérése esetén az alsóbb szint donorjai felesle-
gesen dolgozhatnak.

Hierarchikus desktop gridek esetén kérdés, hogy ad-
junk-e prioritást a felsôbb szintrôl érkezô csomagoknak,
illetve ha egy desktop grid több felsô szinttôl is kér mun-

kát, melyiket részesítse elônyben, mely csomagjait dol-
gozza fel elôbb? A felsôbb szintû desktop gridtôl szár-
mazó munkacsomagok prioritása könnyen biztosítható,
ha az onnan származó munkacsomagok nagyobb prio-
ritással kerülnek be az alsó szintû desktop grid szerver-
re, mint bármelyik, nem felsô szintrôl származó munka-
csomag prioritása.

Hierarchikus rendszerben egy desktop grid több fel-
sôbb szinthez is csatlakozhat. Ebben az esetben alkal-
mazható a BOINC kliens módszere: az alsóbb szintû
desktop grid adminisztrátora megadhatja, hogy a mun-
kacsomagok hány százaléka érkezzen az egyes felsôbb
szintû desktop gridektôl.

Taszkok ütemezése desktop griden

LXII. ÉVFOLYAM 2007/12 17

4. ábra ösztetett hierarchikus rendszer

4.2. Hierarchikus desktop grideket befolyásoló események
Számos olyan esemény létezik, amely közvetlenül

módosítja egy hierarchikus rendszer állapotát, például:
donorok be- és kilépése, új munkacsomag megjelenése,
munkacsomag átadása, munkacsomag feldolgozása,
desktop grid be- és kilépése.

• Új donor megjelenése egy desktop grid teljesítmé-
nyét növeli. A donor azonnal kapcsolódik a kérdéses szer-
verhez és onnan munkát kér, melyen elkezd dolgozni.

• Donor kilépése csökkenti a desktop grid teljesítmé-
nyét. Sajnos ebben az esetben a desktop grid szerver
nem értesül azonnal a kilépés tényérôl, vagyis ha a do-
nor kért korábban munkacsomagokat, azokat addig nem
osztja ki a szerver újabb donoroknak, amíg azok határ-
ideje le nem jár.

• Új munkacsomag megjelenése többféleképpen hat-
hat: ha a munkacsomag prioritása magas, akkor lehe-
tôleg minél elôbb meg kell kapnia egy donornak feldolgo-
zásra. Ha nincs prioritása, akkor bekerül a várakozási
sor végére.

• Munkacsomag átadás akkor következik be, amikor
egy alsóbb szintû desktop grid felsôbb szintrôl kér mun-
kát. Ekkor felsôbb szinten az átadott munkacsomagok-
hoz generálódik egy határidô, amin belül eredménynek
kell érkeznie, különben feleslegesen dolgoztak az alsóbb
szintû desktop grid donorjai.

• Desktop grid belépése többféle módon történhet:
ha alsó szinten lép be egy desktop grid, akkor teljesít-
ménynövelô szerepet tölt be. Felsôbb szintre történô be-
lépéskor az alá bekapcsolt desktop grideknek plusz mun-
kát jelent a tôle származó munkacsomagok feldolgozá-
sa, vagyis az ô szempontjukból saját csomag-feldolgo-
zási teljesítményük csökken. Köztes szintre is beléphet
az új desktop grid, ekkor szerepe kettôs: fogad is és to-
vábbít is munkacsomagokat.

• Desktop grid kilépése több dolgot eredményezhet.
Ha felsô szintû desktop grid lép ki, akkor munka tûnik el.
Ekkor, ha alsóbb szint kapott munkát, feleslegesen szá-
molja azt ki. Alsóbb szintû desktop grid kilépése azt ered-
ményezi, hogy a felsôbb szintrôl kiosztott munkát addig
nem kapja meg másik donor (vagy desktop grid), amíg
határideje le nem jár.

4.3. Hierarchikus desktop gridek ütemezési algoritmusai
Ebben a részben röviden bemutatunk néhány lehet-

séges ütemezési algoritmust hierarchikus desktop gri-
dek esetére, majd elemezzük, hogyan reagálnak a ko-
rábban bemutatott fôbb állapotmódosító eseményekre.

A bemutatásra kerülô ütemezési algoritmusok közös
tulajdonsága, hogy „lokális” algoritmusok, vagyis nincs
rálátásuk a teljes hierarchikus rendszerre, hatókörük az
egyes desktop gridekre korlátozódik, vagyis csak a
hozzájuk kapcsolódó desktop gridrôl rendelkeznek in-
formációval, a felsôbb szintû desktop gridek állapotáról
információjuk nincs.

4.3.1. Alapütemezés

Ez az „ütemezési” algoritmus a SZTAKI által létreho-
zott hierarchikus modell implementáció alapértelmezett

algoritmusa. Lényege a következô: az alsó szintû desk-
top grid fix ,n’ processzorral rendelkezô donorként mu-
tatja magát a felsôbb szintek felé, azaz a felsôbb szin-
tekrôl származó, feldolgozás alatt levô munkacsomagok
száma maximum ,n’ lehet.

Az ütemezés több korábban említett problémát nem
old meg: mivel elôre kötött a kért munkák száma, ezért
az algoritmus nem követi, ha a dekstop grid teljesítmé-
nye növekszik, vagy csökken. Így elképzelhetô olyan ext-
rém eset (például üres alsó szintû desktop grid esetén),
amikor a frissen kapcsolódó donorok nem kapnak mun-
kát. Ellenkezô esetben (donorok kilépésekor), amikor a
desktop grid teljesítménye csökken, túl sok munkát kér,
így a felsôbb szintrôl származó munkák határideje rend-
re lejár: a donorok feleslegesen dolgoznak.

Amennyiben a desktop grid adminisztrátora követi a
változásokat, módosíthatja a kért munka mennyiségét,
de ez külsô, emberi beavatkozást igényel.

4.3.2. Donorfüggô ütemezés

Ez az ütemezési algoritmus annyiban próbálja javí-
tani az alap ütemezést, hogy a kért munkacsomagok
száma követi az alsó szintû desktop gridhez kapcsolódó
donorok számát. Vagyis, új donorok belépése vagy do-
norok kilépése esetén ez jó megoldás, az algoritmus al-
kalmazkodik a változáshoz. Donor kilépése esetén fon-
tos, hogy a kilépô donort a felhasználója törölje a rend-
szerbôl, különben az algoritmus feltételezi, hogy a donor
még mindig dolgozik az alsó szintû desktop grid számá-
ra. Vagyis donor kilépés esetén az algoritmus (hasonló-
an az alap ütemezéshez) emberi beavatkozást igényel
a helyes mûködéshez.

4.3.3. Aktívdonor ütemezése

A donorfüggô ütemezési algoritmus lehetséges kie-
gészítése egy olyan szûrés, amely csak az aktív donorok
számára kér munkát, azaz az olyan donorok kiszûrése,
melyek hosszabb idô óta nem jelentettek le kész munkát.
Két lehetôség kínálkozik a passzív donorok szûrésére:

– a desktop grid adminisztrátor adott idôközönként
törli azokat a donorokat az adatbázisból,
melyek az utolsó ellenôrzés óta nem töltöttek fel
eredményeket, vagy

– az ütemezési algoritmus valósítja meg a donorok
szûrését.

Az emberi beavatkozást elkerülendô célszerû az utób-
bi megoldást választani. Kérdés, mikor kell az algoritmus-
nak egy donort paszszívnak tekintenie? A passzivitás
meghatározása a következôk alapján történik: az algo-
ritmus passzívnak tekinti azokat a donorokat,

– amelyekhez nem tartozik munkacsomag,
így kiszûrhetôek azok a donorok, akik nem kér-
tek újabb munkát, továbbá

– azokat a donorokat, amelyekhez ugyan tartozik
munkacsomag, de a munkacsomag feldolgozási
határideje lejárt.

A fenti két feltétel vizsgálatával biztosan csak annyi
donor számára fog munkát kérni az algoritmus, ahány
a fentiek szerint aktív.

HÍRADÁSTECHNIKA

18 LXII. ÉVFOLYAM 2007/12

Az aktívdonor ütemezés tehát javítja a donorfüggô
ütemezést: emberi beavatkozás nélkül képes kiszûrni a
passzív donorokat, és az aktív donorok számától füg-
gô mennyiségû munkát kér.

4.3.4. Timeout ütemezés

Az eddig említett alap, donorfüggô és aktívdonor üte-
mezési algoritmusok mindegyike a desktop grid állapotá-
tól, pontosabban a donorok számától függô mennyiségû
munkát kért felsôbb szintrôl (az alap ütemezés bizonyos
értelemben kakukktojás, hiszen fix számú munkacsoma-
got kér). Az említett algoritmusok hiányossága, hogy nem
veszik figyelembe a felsôbb szintrôl kapott munkacsoma-
gok határidejét, vagyis hiába kér annyi munkát, ameny-
nyi donor dolgozik, ha a donorok nem tudják teljesíteni
a határidôket (esetleg azért, mert a donorok nagyon
lassú számítógépek).

A probléma kiküszöbölése érdekében a Timeout al-
goritmus nyilvántartja a munkacsomagok átlagos meg-
fordulási idejét (Average Turnaround Time, ATT): a mun-
kacsomag megfordulási idôk (Turnaround Time, TT – a
munkacsomag felsôbb szintrôl való letöltése és a hoz-
zá tartozó eredmény visszatöltése közötti idô) átlagát. A
timeout ütemezés lényege, hogy az algoritmus folyama-
tosan frissíti az ATT értékét, azaz statisztikát készít a
desktop grid teljesítményébôl. Munkacsomag letöltése-
kor ellenôrzi a kapott munkacsomag határidejét. Ameny-
nyiben a kapott határidô kisebb, mint az aktuális ATT,
eldobja a munkacsomagot és nem kér több munkát. Így
azonban holtpontra juthat az algoritmus: ha nem kap
újabb munkát, nincs ami az ATT-t csökkentse. Az ilyen
helyzetek elkerülésére az algoritmus adott idôközön-
ként csökkenti az ATT értékét. Majd ha az ATT a legu-
tolsó letöltött és eldobott munkacsomag határideje alá
csökkent, ismét próbálkozik munka letöltésével.

Az 5. ábra a timeout algoritmus mûködését mutatja.

5. ábra ATT csökkentése

4.3.5. Donortimeout algoritmus

A timeout algoritmus problémásan mûködhet abban
az esetben, ha jelentôsen eltérô teljesítményû donorok
tartoznak a rendszerhez. Tegyük fel, hogy két donor
dolgozik az alsóbb szintû desktop grid számára és fel-
sô szintrôl ugyanolyan számítási igényû és határidejû
munkacsomagokat kap a desktop grid. Az egyik donor
10 perc alatt végez a munkával, a másik 50 perc alatt,
és a munkacsomagok határideje 40 perc. Egyértelmû,
hogy a lassú donor sosem fog érdemben végezni egy
munkacsomaggal sem, az ATT kezdetben mégis 30
perc, vagyis feleslegesen kér az algoritmus munkát a
lassú donor számára is.

A probléma kiküszöbölésére a donortimeout algorit-
mus donoronként tartja nyilván az ATT értékeket, ezál-
tal elkerülhetô a fentebb említett gond: az elsô donor
ATT értéke 10 perc, számára mindig kér újabb munkát
az algoritmus, a lassú donor ATT-je viszont kezdettôl fog-
va 50 perc, vagyis csak azon ritka alkalmakkor fog szá-
mára munkát kérni az algoritmus, ha a hozzá tartozó
ATT értékét 30 perc alá csökkentette.

4.3.6. Várakozási sor

Az eddig bemutatott algoritmusok figyelték a dono-
rok számát, esetleg figyelembe vették a munkacsoma-
gok átalagos feldolgozási idejét, a kapott munkák határ-
idejének viszonyát. Viszont nem foglalkoznak a desktop
grid állapotával, azon belül a helyi, még feldolgozásra vá-
ró munkákkal. Abban az esetben, ha a felsôbb szintrôl
kapott munka nem élvez prioritást a helyiekkel szemben,
feldolgozásuk csak a helyi munka után történik meg.

A várakozási sor mûködése során figyelembe veszi
az aktív donorok halmazát, a kapott munka prioritását, a
kapott munka határidejét, valamint a feldolgozásra váró
munkák halmazát. Új munka letöltésekor prioritás szerint
sorba rendezi a létezô munkacsomagokat és az aktív
donorok ismeretében becslést ad az egyes munkák el-

végzésének idejére (például pesszi-
mista becslés esetén feltételezi, hogy
mindig a leglassabb donorok kapják
a munkát). Amennyiben a kapott mun-
ka nem dolgozható fel határidôn be-
lül, elveti azt és adott ideig nem is kér
munkát felsôbb szintrôl.

A várakozási sor algoritmus való-
jában több ütemezést is magába fog-
lalhat: a létezô munkák feldolgozási
idejének becslési módszerétôl függô-
en más és más ütemezési algoritmust
kapunk.

5. Összefoglalás

A cikk keretein belül a desktop gridek-
ben található munkák ütemezésének
kérdéseit és azok lehetséges megol-
dásait jártuk körbe. Elôször bemutat-
tuk a desktop grid fogalmát és meg-
említettünk pár olyan eredményt, mely

Taszkok ütemezése desktop griden

LXII. ÉVFOLYAM 2007/12 19

a munkák donor oldali ütemezésével foglalkozik, vagyis
azzal a kérdéssel, hogyan végezhetô el adott mennyi-
ségû munka határidôn belül, a szabad számítási kapa-
citás kihasználásával.

Következô lépésként több módszert is ismertettünk
a desktop gridek skálázására: klaszter bevonását, hier-
archikus desktop grid építést és az egyenrangú desk-
top gridek felépítését. A három módszer közül a hierar-
chikus desktop gridekkel foglalkoztunk részletesebben:
megvizsgáltuk, milyen problémákra kell odafigyelni az
ütemezés során, bemutattuk mik befolyásolják az üte-
mezési algoritmusokat, végül példákat mutattunk több
lehetséges ütemezési algoritmusra, melyek több szem-
szögbôl becsülik meg a letöltendô munka mennyiségét.

További munkák között szerepel az algoritmusok tel-
jesítményének szimuláción keresztüli vizsgálata, vala-
mint az egyenrangú desktop gridekkel kapcsolatos üte-
mezés körüljárása.

A fenti algoritmusokat az „Új generációs grid techno-
lógiák kifejlesztése és meteorológiai alkalmazása a kör-
nyezetvédelemben és az épületenergetikában” címû
Jedlik Ányos projekt [14] keretében létrehozandó hier-
archikus SZTAKI Desktop Grid rendszerekben fogjuk al-
kalmazni. A projekten belüli fôbb alkalmazási területek:
a klíma-modellezés és az épületek hûtéstechnikájának
vezérlése. További fontos alkalmazása lesz a kidolgozan-
dó ütemezésnek a CancerGrid EU FP6-os projektben,
ahol rák elleni orvosságok fejlesztési idejének csökken-
tése a cél [15].

A hierarchikus SZTAKI desktop gridek megnyitják az
utat a desktop gridek széleskörû és skálázható alkalma-
zásának irányába a kutatóhelyek és a vállalatok szá-
mára egyaránt.

Köszönetnyilvánítás

Jelen cikkben bemutatott munka az NKFP2-00007/2005
projekt keretein belül készült, amit a Nemzeti Kutatási és

Technológiai Hivatal tett lehetôvé a Jedlik Ányos program
keretein belül az új generációs grid technológiák

kifejlesztésére és meteorológiai alkalmazására
a környezetvédelemben és az épületenergetikában.

Irodalom

[1] I. Foster, C. Kesselman, eds.,
The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, 1999.

[2] David P. Anderson:
Public Computing: Reconnecting People to Science,
Conference on Shared Knowledge and the Web.
Residencia de Estudiantes, Madrid, November 2003.

[3] D. P. Anderson, J. Cobb, E. Korpela,
M. Lebofsky, D. Werthimer:
SETI@home: An experiment in public-resource
computing. Communications of the ACM,
November 2002, Vol. 45, No.11., pp.56–61.
http://setiathome.berkeley.edu/

[4] http://einstein.phys.uwm.edu/

[5] http://climateprediction.net
[6] David P. Anderson:

BOINC: A System for Public-Resource Computing
and Storage.
5th IEEE/ACM Int. Workshop on Grid Computing,
8 November 2004, Pittsburgh, USA.

[7] Derrick Kondo, David P. Anderson, John McLeod VII:
Performance Evaluation of Scheduling Policies for
Volunteer Computing.
3rd IEEE Int. Conf. on e-Science and Grid Computing,
Banagalore, India, 10-13 December 2007.

[8] David P. Anderson, John McLeod VII:
Local Scheduling for Volunteer Computing.
Workshop on Large-Scale, Volatile Desktop Grids
(PCGrid 2007) held in conjunction with
the IEEE Int. Parallel & Distributed Processing
Symposium (IPDPS), 30 March 2007, Long Beach.

[9] P. Kacsuk, N. Podhorszki, T. Kiss:
„Scalable Desktop Grid System”, High performance
computing for computational science VECPAR’06,
Rio de Janeiro, Brazil, 10-13 July 2006, pp.1–13.

[10] P. Kacsuk, A. Marosi, J. Kovacs, Z. Balaton,
G. Gombas, G. Vida, A. Kornafeld:
SZTAKI Desktop Grid –
a Hierarchical Desktop Grid System,
Cracow Grid Workshop, Krakow, 2006.

[11] P. Kacsuk, G. Sipos, A. Tóth, Z. Farkas,
G. Kecskeméti, G. Hermann:
Defining and running Parametric Study Applications
by the P-GRADE Portal.
Cracow Grid Workshop, Krakow, 2006.

[12] Zs. Molnár, I. Szeberényi:
Saleve: Simple Web-Services Based Environment
for Parameter Study Applications,
6th IEEE/ACM Int. Workshop on Grid Computing,
Seattle, 2005.

[13] Burcsi Péter, Gombás Gábor, Kornafeld Ádám,
Dr. Kovács Attila, Kovács József, Marosi Attila Csaba,
Dr. Podhorszki Norbert, Vida Gábor:
„Szuperszámítógépes teljesítmény szuperszámító-
gép nélkül – A Binsys Projekt”,
Networkshop 2006.

[14] http://www.nkth.gov.hu/main.php?folderID=922
[15] http://www.cancergrid.eu/

HÍRADÁSTECHNIKA

20 LXII. ÉVFOLYAM 2007/12

