Automatizalt biztonsagi tesztelés
tapasztalatai Trusted Computing terileten

K&szeal GABOR, TOTH GERGELY, HORNAK ZOLTAN

BME Méréstechnika és Informacios Rendszerek Tanszék, SEARCH Laboratérium
{gabor.koszegi, gergely.toth, zoltan.hornak}@mit.bme.hu
Lektoralt

Kulcsszavak: OpenTC, Trusted Computing, automatikus biztonsagi tesztelés, Flinder

Ez a cikk egy esettanulmany: a SEARCH Laboratdrium altal fejlesztett automatikus biztonsagi tesztelé keretrendszert, a Flin-
dert és a segitségével az EU FP6 OpenTC projektben elvégzett teszteléses hibakeresési feladat eredményeit, valamint an-
nak elvégzése soran szerzett tapasztalatokat dsszegzi. A feladat méreteit jol mutatja az elvégzett tébb mint 130 ezer teszt-
eset, melyek négy gépen kériilbeliil két hét folyamatos futtatdst vettek igénybe; melynek eredményeként a tesztelés alanyat
jelent6 250 ezer soros TSS implementacidoban szamos — k6zéttiik sulyos, kihaszndlhaté — biztonsagi szempontbdl veszélyes

hibat fedeztlink fel.
1. Bevezetés

A manapsag hasznélatos szoftverekkel kapcsolatos biz-
tonsagi lyukak j6 részét — az egész rendszerhez mérve
— egészen apro6 hibak okozzak, amelyek barhol eléfor-
dulhatnak, ezért kiszlréslk nehéz feladat. Szerencsé-
re a legtdébb gondot okozd, tipikus esetekben (példaul
buffer overflow, integer overflow, printf format string bug)
ez a feladat nem reménytelen. A leggyakroribb hibak fel-
deritésében ugyanis alkalmazhatdak automatikus, vagy
fél-automatikus moédszerek, amelyek a hibak tdlnyoméd
tobbségét képesek hatékonyan felismerni.

Az ok amiért régebben kevés figyelmet szenteltek az
ilyen hibak kikliszébolésének az az, hogy a szoftverek-
ben maradé programozéi hibaknak, csak egy része va-
lik biztonsagi szempontbol kritikussa és még ezeknek is
csak kis hanyada az, ami valos veszélyt hordoz maga-
ban, azaz a rendszer ellen térténé tamadas soran ki-
hasznalhat6. A programhibdk ezen kis hanyada tette
lehet6vé azonban a legtébb ,kartev6” megjelenését: a
mai virusok és a férgek mind ennek kdszdnhetik Iéti-
ket. A feltért gépekbdl szervezett ,botneteknek” neve-
zett hal6zatok felelések a social enineeringre alapuld
spam és phishing tamadasokeért.

A teszteléses hibafelderités népszerilisége azért is
névekedhetett, mert egy komplexebb rendszer teljes egé-
szének formalis verifikacidja gyakorlatilag kivitelezhetet-
len feladat mind id8igényessége mind nagyon magas
kéltsége miatt.

A projekt soran hasznalt Flinder keretrendszer a di-
namikus teszteléses hibafelderités médszertanat alkal-
mazza: ezért gyors és hatékony detektalasi eszkdzt je-
lent a leggyakoribb biztonsagi hibak feltarasaban.

Jelen cikk egy ilyen automatizalt biztonsagi teszte-
Iéses feladat eredményeit és tapasztalatait foglalja 6sz-
sze: az EU 6. keretprogramjaban inditott Open Trusted
Computing (OpenTC) projekt soran a SEARCH Labora-
térium tesztelte az Infineon altal elkészitett Linux alapu
TSS implementaciot.

LXIl. EVFOLYAM 2007/11

2. Trusted Computing

A Trusted Computing leginkabb bizalmi szamitastechni-
kanak fordithaté — a felhasznal6 szamitdgépébe vetett
bizalomrél sz6l; a szamitdgép olyan modon térténd mi-
kddtetésérdl, hogy a gép tulajdonosa megbizonyosod-
hasson rendszere integritasardl vagy adatai biztonsa-
garol. Hasonl6an szikséges, hogy egy szoftvergyarto is
megbizonyosodhasson arrél, hogy a programjait nem mo-
dositjak, vagy hasznaljak az adott gépen illetékteleniil.

Az Ujdonsag az architektiraban, hogy célhardverrel
tamogatott (TPM, Trusted Platform Module), amely chi-
pek mar néhany éve megtalalhatdk a piacon és beépité-
slik néhany laptop tipusba és asztali PC alaplapra mar
megtoértént. (2006-ban vilagszerte 60 millié TPM chipet
adtak el, 2007-re pedig az IDC szerint a prognézis 120
millid, mig 2010-re 260 millio.)

A chip feladata a biztonsagi alapszolgaltatasok biz-
tositasa, mint példaul:

— valodi véletlenszam-generalas,

— aszimmetrikus kulcsok generalasa,

— rendszer integritas ellendrzés,

— kulcsok biztonsagos tarolasa,

— nyilvanos kulcsu tanudsitvanyok tarolasa,

— kriptogréfiai algoritmusok (RSA, SHA-1, AES stb.)

— biztonsagos interfész,

— bontas ellenall6 tokozas.

Ezekre a miiveletekre éplilé rendszer-szoftverek fela-
data pedig a chip szolgaltatdsainak megosztasa a par-
huzamosan fut6 folyamatok kézétt, valamint szoftvere-
sen megvalositott tobblet-szolgaltatasok nyujtasa.

3. OpenTC

Az Open Trusted Computing projekt célja a TCG altal
specifikalt platform nyilt forraskddu megvalésitasa. A pro-
jekt 2005 végén indult és 2008-ra nyilvanos Linux disz-
tribdcidkba integralt Trusted Computing megoldasokat

27

HIRADASTECHNIKA

fog kidolgozni. Az OpenTC projekt a teljes Trusted Com-
puting architektdran dolgozik, mind alacsony szinti esz-
kéz-meghajtoé programokat, mind felhasznaldi programo-
kat is fog késziteni.

Els6ként azonban a projekt az alap Trusted Compu-
ting funkcidkat készitette el.

| | | 5 Application
; | L ;S'er . V7| . _c —e

‘: TCG Service Provider Interface (TSPI)

TCG Device Driver Library (TDDL) |

L :

v
TPM Device Driver |
' ‘ 7 §

X

Trusted Platform Module (TPM)

1. abra Trusted Software Stack

Az 1. abra a TCG platform szoftverének rétegzett fel-
épitését mutatja be, ezen jol lathatd, hogy a kiilénb6z6
rétegek eltérd jogosultsagokkal futnak.

A SEARCH Laboratérium altal elvégzett tesztelés
legfébb célpontjat képez6 Core Services (TCS) réteg az
6sszekotd kapocs a felhasznaldi modban futé progra-

mok és az eszkdz-meghajté programok k6z6tt, ennek
megfelel6en ennek a rétegnek rendszergazdai jogok-
kal kell futnia. Emellett, funkcionalitasat tekintve ez az
egész architektira legdsszetettebb modulja és tulajdon-
képpen egy haldzati szolgaltatast valésit meg. E ténye-
zG6ket figyelembe véve, megallapithatd, hogy ennek a
rétegnek a legszélesebb a tamadhatdsagi felllete, igy
a programozoi hibaktdl valé mentesitése kiléndsen kri-
tikus a rendszer biztonsaga szempontjabdl.

A fenti indokok miatt kerilt sor az Infineon altal elké-
szitett implementacié szisztematikus, automatizalt tesz-
telésére.

4. Flinder

A Flinder a SEARCH Laboratériumban fejlesztett auto-
matikus biztonsagi tesztel6 keretrendszer, célja a vizs-
galt rendszerben taldlhat6 biztonsagi szempontbdl kri-
tikus, tipikus programozdi hibak (buffer overflow, integer
overflow, printf format string bug) megtalalasa, mellyel
lehetdvé teszi a hibak kijavitasat, ami altal névelheté a
tesztelt megoldasok mindsége és biztonsagi szintje.
Afeladat elvégzéséhez a tesztelés célpontjanak m-
kodését dinamikusan, annak futtatdsaval vizsgalja. A di-
namikus tesztelés témakdrén beliil képes white-box és
black-box tesztelésre is, az els§ mddszer a forraskéd
modositasaval térténd, fliggvény szintl hibainjektalast
tesz lehet6vé, mig a black-box moédszer a program bina-
ris kodjat hasznalja csak — a belsé mikddések figyelem-
be vétele nélkll — a szoftvert egészében vizsgalja, hogy
az a kiilénb6zé manipulalt bemenetek hatasara produ-
kal-e valamilyen nem vart mikodést (kilép, lefagy stb.).
Halézati protokollok és programok tesztelésére egy-
arant alkalmas paraméterezheté altalanos céld prog-
rammodulokat tartalmaz, ezekbdl a kivanalmaknak meg-
felelGen épithetd fel egy tesztcsomag a konkrét feladat-

Tesztelt kommunikacié
t — » T t f
- - — — arget o
Input Generator | — - A
2 4bra ~ - P Evaluation
A Flinder SN
architektdrélis P ~ ™~ “«
felépitése
N AN
/=
Capturer Dispatcher
Fmmmmmmmmmme e : %7 %
' Message format (— -~ _ S
i description (MFDL) (-~~~ Parser Serializer
[N
MSDL
M3DL
[| ImTTTT T T T
' TN . MSDL : PR . !
i Protocol statechart :__'J,: Protocol Logic 4[> Test Logic \N__: Test algorithm |
- ___ 1 e |

28

LXIl. EVFOLYAM 2007/11

Automatizalt biztonsagi tesztelés tapasztalatai...

hoz. A kdnnyebb alkalmazhatdsag érdekében beépitet-
ten tdmogat sokféle kriptografiai, tomoritési és kddola-
si eljarast. Az input/output adatok kezelése kdnnyen ki-
egészithetd extra funkcidkkal, Python nyelv(szkriptek
segitségével.

A tesztelés altalanos eljarasa a kdévetkez6képpen

épdl fel a Flinder rendszerben (2. abra):

* A tesztelés alapjaként szlikség van egy legalis be-
menetre, vagy egy programra, ami ilyeneket képes
eléallitani (Input Generator).

» Ezutan a Capturer altal fogadott/elkapott bemend
adatok feldolgozasa kdvetkezhet.

+ A Parser modul egy leiré fajl (Message Format De-
scriptor) alapjan dolgozza fel a bemenetére érkez6
adatokat. Ez a leir¢ fajl tartalmazza az input ada-
tok formatumanak, struktdrainak részletes leirasat.

» Miutan a Parser atalakitotta a bementet egy a ke-
retrendszer altal értelmezhetd altalanos belsd adat-
szerkezetté (Message Structure Description Lang-
uage), a Protokol Logic az Uizenet tartalma alapjan
|épteti a vizsgalt protokoll mikddését leiré allapot-
gépet (Protocol statechart).

» Ezutan a Test Logic kiilénb6z6 valtoztatasokat vé-
gezhet az Uzenet adatain, (példaul egész értékek
atirasa, bufferek hosszanak, tartalmanak véltozta-
tasa) annak érdekében, hogy a médositott értékek
a tesztelt programban a futas soran elidézze a ti-
pikus hibak szimptémait.

« Ezt kbvetben a Serializer elkésziti a bels6é adatrep-
rezentacios szerkezet alapjan a tesztiizenetet, mely
tartalmazza a Test Logic altal eszk6zélt médositast
is.

+ Az igy el8all6 Gizenetet a Dispatcher modul kildi el
a vizsgalt programnak (ToE, Target of Evaluation),
aztan figyeli annak viselkedését: sikeresen lefut-e,
hibalzenetet kiild, lefagy (az operaciés rendszer
jelez, hogy hiba tértént), majd ezek alapjan értékeli
a teszteset kimenetelét.

White-hox tesztelés

A tesztelés mddszere megegyezik mind white-box,
mind black-box esetben, kiilénbség a Capturer és Dis-
patcher modul miik6désében van.

Forraskod alapu tesztelés esetén a modulok egy ré-
szét a tesztelend6 programhoz kell forditani. Ezen mo-
dulok célja, hogy a white-box tesztelés soran médosi-
tani kivant bels6 adatstrukturat (példaul egy fliggvény
paramétereit, egy objektum példanyt stb.) kdzvetlenil a
Flinder altal kezelt MSDL formara konvertaljak, majd a
médositasokat tartalmazé, Flindert6l érkez6 MSDL alap-
jan az adatstruktdrat médositsak.

Természetesen az egész tesztrendszert nem szlk-
séges hozzaforditani a tesztelt programhoz, hiszen az
elébb emlitett modulok a folyamatok kdzti kommunika-
cioval (IPC) kapcsolédnak a Flinder keretrendszerhez.

3. abra

A black-box és a white-box tesztelés elhelyezkedése a tesztkérnyezetben

/

Kliens program

\ / Flinder keretrendszer \

A kliens program forraskodja
(Input Generator)

f

#include "tspi.h"
#include "tss_error.h"

~

if (Tspi_TPM_GetRandom({Tpm, Count, &Random) == TSS_SUCCESS)

for (i=0; i<Count; i++) printf("%02X ", Random([i]);
}
else
printf("Tspi_TPM_GetRandom failed!\n");

API hivas
2
®

o (\" Fhinder
o‘l‘-'Les
&
éb‘
QN 05«‘-' Coreservice Daemon
- (Target of Evaluation)

TSS Service Provider réte
libtss_sp.so

A&

A TSPI fliggvények
implementacioi

&
Q

SOAP 3lapu tavoli eljaras hivas

/

1 A forraskod és a fliggvénykdnyvtar egy programba forditédnak:

tspi_tom_getrandom: tspi_tpm_getrandom.o :
\ $(CC) -0 $@ $+ -Wall -LS(LINKSEARCH) -Itss_sp

LXIl. EVFOLYAM 2007/11

29

HIRADASTECHNIKA

5. Tesztelés végrehajtasa

Az OpenTC Infineon TSS implementéciéban a hibake-
resést két kiilbnb6z6 szinten valositottuk meg: elsé meg-
kdzelitésben a TCS interfészének black-box tipusu tesz-
telése tortént meg, amely a valésagban tulajdonképpen
egy tavoli-eljarashivast megvaldsito SOAP (Simple Ob-
ject Access Protocol) alapu protokoll.

Masodik megkozelitésben, minthogy a rendszer funk-
cioit TSPI szinten egy programozoéi fiiggvénykdnyvtar
implementalja, kézenfekvd volt a forraskdd alapu tesz-
telés végrehajtasa is, amit a platform tesztprogramjainak
médositasaval vittlink véghez. igy a Core Services ré-
teg felett elhelyezkedd TSP réteg vizsgalata is lehetévé
valt, azaltal, hogy a hibaknak a rendszerbe térténd in-
jektalasa e réteg interfészén keresztll tortént.

A két megkodzelités tesztelési kdrnyezetben vald el-
helyezkedését szemlélteti a 3. dbra.

6. A tesztelés eredményei
és tanulsagok

Osszesen 135 237 teszteset végrehajtasara keriilt sor.
E hatalmas mennyiségben azonban mindéssze 403 bi-
zonyult olyannak, ami a szolgaltatdsban hibat okozott.

Az el6bb latott két adat koz6tt harom nagysagrend-
nyi kilénbség van; a tesztesetek kevesebb mint 0,3 sza-
zalékaban volt hiba. Ez egy nagyon fontos eredmény,
hiszen ebbdl vilagosan megallapithat6, hogy kézi tesz-
teléssel lehetetlen lett volna ezeknek a hibaknak a meg-
talalasa — a feladat sz6 szerint egyenértéki egy ti ke-
resésével a szénakazalban.

Azonban a tesztelt 65 fliggvénybdl és 36 SOAP lize-
netbdl 3 fliggvényben (4,6%) és 4 (izenet feldolgoza-
saban (11%) talaltunk hibat, ami j6l mutatja azt is, hogy
még egy ilyen biztonsag-kritikus rendszer fejlesztése koz-
ben sem zarhatdk ki teljes bizonyossaggal a tipushibak.

Ezen eredmények is igazoljak az automatizalt biz-
tonsagi tesztelési médszerek fontossagat: a szoftver-
gyarté mas moédon nem klszdébdlhette volna ki ezeket
a hibakat a végsé termékébdl, melyek barmelyike alkal-
mas lehetett volna kilénb6z8 tAmadasok kivitelezésé-
re az egyszerd szolgéltatds-megtagadasos tamadasok-
tol (denial of service, DoS) kezdve egy tetszéleges kod
rendszergazdai jogosultsagokkal valo futtatasaig.

Egy nyilvanos EU FP6 kutatas-fejlesztési projekt jo
alkalom a biztonsagi tesztelés eredményeinek bemuta-
tasara, melyek ipari megrendelések esetén szigoru ti-
toktartasi nyilatkozatok hatalya ala esnek. A tesztelés
soran az alabbi harom f6 tanulsag sz(rhet6 le:

» Még a mai biztonsag-kritikus alkalmazasokban is

kovetnek el tipikus programozéi hibakat,
bar ezeket 15 éve ismeri a szakma.

» A most latott TSS implementaciéhoz hasonld

nagy bonyolultsagu szoftverek
manuadlis modszerekkel torténd hibakeresése
a gyakorlatban reménytelen feladat.

30

» Azonban az automatizalt moédszerek
(biztonsagi tesztel6k) hasznos eszkdzok a tipikus
hibak elleni védekezésben.
Segitséglkkel szisztematikusan tesztelhetd
a célrendszer funkcionalitasa, kikliszébélhetdk
a tipikus hibak és ezaltal nagyban névelhet§ a
rendszerek biztonsagi szintje és mindsége.

Irodalom

Flinder whitepaper & test metodology
http://www.flinder.hu/library/index.html
Trusted Computing Group
http://www.trustedcomputinggroup.org
OpenTC
http://www.opentc.net
Buffer overflow
Aleph1, Phrack Magazine (Vol.7, Issue 49, File 14)
http://www.phrack.org./archives/49/p49-14
Heap overflow
Matt Conover, wOOw00 Security Team
http://www.w00w00.org/files/articles/heaptut.txt
Integer bugs
Phrack Magazine
(Vol. 0x0b, Issue 0x3c, Phile #0x0a)
http://www.phrack.org./archives/60/p60-0x0a.txt
Exploiting format string vulnerabilities
scut, team teso
http://julianor.tripod.com/teso-fs1-1.pdf

LXIl. EVFOLYAM 2007/11

