
1. Bevezetés

A manapság használatos szoftverekkel kapcsolatos biz-
tonsági lyukak jó részét – az egész rendszerhez mérve
– egészen apró hibák okozzák, amelyek bárhol elôfor-
dulhatnak, ezért kiszûrésük nehéz feladat. Szerencsé-
re a legtöbb gondot okozó, tipikus esetekben (például
buffer overflow, integer overflow, printf format string bug)
ez a feladat nem reménytelen. A leggyakroribb hibák fel-
derítésében ugyanis alkalmazhatóak automatikus, vagy
fél-automatikus módszerek, amelyek a hibák túlnyomó
többségét képesek hatékonyan felismerni.

Az ok amiért régebben kevés figyelmet szenteltek az
ilyen hibák kiküszöbölésének az az, hogy a szoftverek-
ben maradó programozói hibáknak, csak egy része vá-
lik biztonsági szempontból kritikussá és még ezeknek is
csak kis hányada az, ami valós veszélyt hordoz magá-
ban, azaz a rendszer ellen történô támadás során ki-
használható. A programhibák ezen kis hányada tette
lehetôvé azonban a legtöbb „kártevô” megjelenését: a
mai vírusok és a férgek mind ennek köszönhetik létü-
ket. A feltört gépekbôl szervezett „botneteknek” neve-
zett hálózatok felelôsek a social enineeringre alapuló
spam és phishing támadásokért.

A teszteléses hibafelderítés népszerûsége azért is
növekedhetett, mert egy komplexebb rendszer teljes egé-
szének formális verifikációja gyakorlatilag kivitelezhetet-
len feladat mind idôigényessége mind nagyon magas
költsége miatt.

A projekt során használt Flinder keretrendszer a di-
namikus teszteléses hibafelderítés módszertanát alkal-
mazza: ezért gyors és hatékony detektálási eszközt je-
lent a leggyakoribb biztonsági hibák feltárásában.

Jelen cikk egy ilyen automatizált biztonsági teszte-
léses feladat eredményeit és tapasztalatait foglalja ösz-
sze: az EU 6. keretprogramjában indított Open Trusted
Computing (OpenTC) projekt során a SEARCH Labora-
tórium tesztelte az Infineon által elkészített Linux alapú
TSS implementációt.

2. Trusted Computing

A Trusted Computing leginkább bizalmi számítástechni-
kának fordítható – a felhasználó számítógépébe vetett
bizalomról szól; a számítógép olyan módon történô mû-
ködtetésérôl, hogy a gép tulajdonosa megbizonyosod-
hasson rendszere integritásáról vagy adatai biztonsá-
gáról. Hasonlóan szükséges, hogy egy szoftvergyártó is
megbizonyosodhasson arról, hogy a programjait nem mó-
dosítják, vagy használják az adott gépen illetéktelenül.

Az újdonság az architektúrában, hogy célhardverrel
támogatott (TPM, Trusted Platform Module), amely chi-
pek már néhány éve megtalálhatók a piacon és beépíté-
sük néhány laptop típusba és asztali PC alaplapra már
megtörtént. (2006-ban világszerte 60 millió TPM chipet
adtak el, 2007-re pedig az IDC szerint a prognózis 120
millió, míg 2010-re 260 millió.)

A chip feladata a biztonsági alapszolgáltatások biz-
tosítása, mint például:

– valódi véletlenszám-generálás,
– aszimmetrikus kulcsok generálása,
– rendszer integritás ellenôrzés,
– kulcsok biztonságos tárolása,
– nyilvános kulcsú tanúsítványok tárolása,
– kriptográfiai algoritmusok (RSA, SHA-1, AES stb.)
– biztonságos interfész,
– bontás ellenálló tokozás.
Ezekre a mûveletekre épülô rendszer-szoftverek fela-

data pedig a chip szolgáltatásainak megosztása a pár-
huzamosan futó folyamatok között, valamint szoftvere-
sen megvalósított többlet-szolgáltatások nyújtása.

3. OpenTC

Az Open Trusted Computing projekt célja a TCG által
specifikált platform nyílt forráskódú megvalósítása. A pro-
jekt 2005 végén indult és 2008-ra nyilvános Linux disz-
tribúciókba integrált Trusted Computing megoldásokat

LXII. ÉVFOLYAM 2007/11 27

Automatizált biztonsági tesztelés
tapasztalatai Trusted Computing területen

KÔSZEGI GÁBOR, TÓTH GERGELY, HORNÁK ZOLTÁN

BME Méréstechnika és Információs Rendszerek Tanszék, SEARCH Laboratórium
{gabor.koszegi, gergely.toth, zoltan.hornak}@mit.bme.hu

Kulcsszavak: OpenTC, Trusted Computing, automatikus biztonsági tesztelés, Flinder

Ez a cikk egy esettanulmány: a SEARCH Laboratórium által fejlesztett automatikus biztonsági tesztelô keretrendszert, a Flin-

dert és a segítségével az EU FP6 OpenTC projektben elvégzett teszteléses hibakeresési feladat eredményeit, valamint an-

nak elvégzése során szerzett tapasztalatokat összegzi. A feladat méreteit jól mutatja az elvégzett több mint 130 ezer teszt-

eset, melyek négy gépen körülbelül két hét folyamatos futtatást vettek igénybe; melynek eredményeként a tesztelés alanyát

jelentô 250 ezer soros TSS implementációban számos – közöttük súlyos, kihasználható – biztonsági szempontból veszélyes

hibát fedeztünk fel.

Lektorált

fog kidolgozni. Az OpenTC projekt a teljes Trusted Com-
puting architektúrán dolgozik, mind alacsony szintû esz-
köz-meghajtó programokat, mind felhasználói programo-
kat is fog készíteni.

Elsôként azonban a projekt az alap Trusted Compu-
ting funkciókat készítette el.

1. ábra Trusted Software Stack

Az 1. ábra a TCG platform szoftverének rétegzett fel-
építését mutatja be, ezen jól látható, hogy a különbözô
rétegek eltérô jogosultságokkal futnak.

A SEARCH Laboratórium által elvégzett tesztelés
legfôbb célpontját képezô Core Services (TCS) réteg az
összekötô kapocs a felhasználói módban futó progra-

mok és az eszköz-meghajtó programok között, ennek
megfelelôen ennek a rétegnek rendszergazdai jogok-
kal kell futnia. Emellett, funkcionalitását tekintve ez az
egész architektúra legösszetettebb modulja és tulajdon-
képpen egy hálózati szolgáltatást valósít meg. E ténye-
zôket figyelembe véve, megállapítható, hogy ennek a
rétegnek a legszélesebb a támadhatósági felülete, így
a programozói hibáktól való mentesítése különösen kri-
tikus a rendszer biztonsága szempontjából.

A fenti indokok miatt került sor az Infineon által elké-
szített implementáció szisztematikus, automatizált tesz-
telésére.

4. Flinder

A Flinder a SEARCH Laboratóriumban fejlesztett auto-
matikus biztonsági tesztelô keretrendszer, célja a vizs-
gált rendszerben található biztonsági szempontból kri-
tikus, tipikus programozói hibák (buffer overflow, integer
overflow, printf format string bug) megtalálása, mellyel
lehetôvé teszi a hibák kijavítását, ami által növelhetô a
tesztelt megoldások minôsége és biztonsági szintje.

A feladat elvégzéséhez a tesztelés célpontjának mû-
ködését dinamikusan, annak futtatásával vizsgálja. A di-
namikus tesztelés témakörén belül képes white-box és
black-box tesztelésre is, az elsô módszer a forráskód
módosításával történô, függvény szintû hibainjektálást
tesz lehetôvé, míg a black-box módszer a program biná-
ris kódját használja csak – a belsô mûködések figyelem-
be vétele nélkül – a szoftvert egészében vizsgálja, hogy
az a különbözô manipulált bemenetek hatására produ-
kál-e valamilyen nem várt mûködést (kilép, lefagy stb.).

Hálózati protokollok és programok tesztelésére egy-
aránt alkalmas paraméterezhetô általános célú prog-
rammodulokat tartalmaz, ezekbôl a kívánalmaknak meg-
felelôen építhetô fel egy tesztcsomag a konkrét feladat-

HÍRADÁSTECHNIKA

28 LXII. ÉVFOLYAM 2007/11

2. ábra
A Flinder

architektúrális
felépítése

hoz. A könnyebb alkalmazhatóság érdekében beépítet-
ten támogat sokféle kriptográfiai, tömörítési és kódolá-
si eljárást. Az input/output adatok kezelése könnyen ki-
egészíthetô extra funkciókkal, Python nyelvû szkriptek
segítségével.

A tesztelés általános eljárása a következôképpen
épül fel a Flinder rendszerben (2. ábra):

• A tesztelés alapjaként szükség van egy legális be-
menetre, vagy egy programra, ami ilyeneket képes
elôállítani (Input Generator).

• Ezután a Capturer által fogadott/elkapott bemenô
adatok feldolgozása következhet.

• A Parser modul egy leíró fájl (Message Format De-
scriptor) alapján dolgozza fel a bemenetére érkezô
adatokat. Ez a leíró fájl tartalmazza az input ada-
tok formátumának, struktúráinak részletes leírását.

• Miután a Parser átalakította a bementet egy a ke-
retrendszer által értelmezhetô általános belsô adat-
szerkezetté (Message Structure Description Lang-
uage), a Protokol Logic az üzenet tartalma alapján
lépteti a vizsgált protokoll mûködését leíró állapot-
gépet (Protocol statechart).

• Ezután a Test Logic különbözô változtatásokat vé-
gezhet az üzenet adatain, (például egész értékek
átírása, bufferek hosszának, tartalmának változta-
tása) annak érdekében, hogy a módosított értékek
a tesztelt programban a futás során elôidézze a ti-
pikus hibák szimptómáit.

• Ezt követôen a Serializer elkészíti a belsô adatrep-
rezentációs szerkezet alapján a tesztüzenetet, mely
tartalmazza a Test Logic által eszközölt módosítást
is.

• Az így elôálló üzenetet a Dispatcher modul küldi el
a vizsgált programnak (ToE, Target of Evaluation),
aztán figyeli annak viselkedését: sikeresen lefut-e,
hibaüzenetet küld, lefagy (az operációs rendszer
jelez, hogy hiba történt), majd ezek alapján értékeli
a teszteset kimenetelét.

White-box tesztelés
A tesztelés módszere megegyezik mind white-box,

mind black-box esetben, különbség a Capturer és Dis-
patcher modul mûködésében van.

Forráskód alapú tesztelés esetén a modulok egy ré-
szét a tesztelendô programhoz kell fordítani. Ezen mo-
dulok célja, hogy a white-box tesztelés során módosí-
tani kívánt belsô adatstruktúrát (például egy függvény
paramétereit, egy objektum példányt stb.) közvetlenül a
Flinder által kezelt MSDL formára konvertálják, majd a
módosításokat tartalmazó, Flindertôl érkezô MSDL alap-
ján az adatstruktúrát módosítsák.

Természetesen az egész tesztrendszert nem szük-
séges hozzáfordítani a tesztelt programhoz, hiszen az
elôbb említett modulok a folyamatok közti kommuniká-
cióval (IPC) kapcsolódnak a Flinder keretrendszerhez.

Automatizált biztonsági tesztelés tapasztalatai...

LXII. ÉVFOLYAM 2007/11 29

3. ábra
A black-box és a white-box tesztelés elhelyezkedése a tesztkörnyezetben

5. Tesztelés végrehajtása

Az OpenTC Infineon TSS implementációban a hibake-
resést két különbözô szinten valósítottuk meg: elsô meg-
közelítésben a TCS interfészének black-box típusú tesz-
telése történt meg, amely a valóságban tulajdonképpen
egy távoli-eljáráshívást megvalósító SOAP (Simple Ob-
ject Access Protocol) alapú protokoll.

Második megközelítésben, minthogy a rendszer funk-
cióit TSPI szinten egy programozói függvénykönyvtár
implementálja, kézenfekvô volt a forráskód alapú tesz-
telés végrehajtása is, amit a platform tesztprogramjainak
módosításával vittünk véghez. Így a Core Services ré-
teg felett elhelyezkedô TSP réteg vizsgálata is lehetôvé
vált, azáltal, hogy a hibáknak a rendszerbe történô in-
jektálása e réteg interfészén keresztül történt.

A két megközelítés tesztelési környezetben való el-
helyezkedését szemlélteti a 3. ábra.

6. A tesztelés eredményei
és tanulságok

Összesen 135 237 teszteset végrehajtására került sor.
E hatalmas mennyiségben azonban mindössze 403 bi-
zonyult olyannak, ami a szolgáltatásban hibát okozott.

Az elôbb látott két adat között három nagyságrend-
nyi különbség van; a tesztesetek kevesebb mint 0,3 szá-
zalékában volt hiba. Ez egy nagyon fontos eredmény,
hiszen ebbôl világosan megállapítható, hogy kézi tesz-
teléssel lehetetlen lett volna ezeknek a hibáknak a meg-
találása – a feladat szó szerint egyenértékû egy tû ke-
resésével a szénakazalban.

Azonban a tesztelt 65 függvénybôl és 36 SOAP üze-
netbôl 3 függvényben (4,6%) és 4 üzenet feldolgozá-
sában (11%) találtunk hibát, ami jól mutatja azt is, hogy
még egy ilyen biztonság-kritikus rendszer fejlesztése köz-
ben sem zárhatók ki teljes bizonyossággal a típushibák.

Ezen eredmények is igazolják az automatizált biz-
tonsági tesztelési módszerek fontosságát: a szoftver-
gyártó más módon nem küszöbölhette volna ki ezeket
a hibákat a végsô termékébôl, melyek bármelyike alkal-
mas lehetett volna különbözô támadások kivitelezésé-
re az egyszerû szolgáltatás-megtagadásos támadások-
tól (denial of service, DoS) kezdve egy tetszôleges kód
rendszergazdai jogosultságokkal való futtatásáig.

Egy nyilvános EU FP6 kutatás-fejlesztési projekt jó
alkalom a biztonsági tesztelés eredményeinek bemuta-
tására, melyek ipari megrendelések esetén szigorú ti-
toktartási nyilatkozatok hatálya alá esnek. A tesztelés
során az alábbi három fô tanulság szûrhetô le:

• Még a mai biztonság-kritikus alkalmazásokban is
követnek el tipikus programozói hibákat,
bár ezeket 15 éve ismeri a szakma.

• A most látott TSS implementációhoz hasonló
nagy bonyolultságú szoftverek
manuális módszerekkel történô hibakeresése
a gyakorlatban reménytelen feladat.

• Azonban az automatizált módszerek
(biztonsági tesztelôk) hasznos eszközök a tipikus
hibák elleni védekezésben.
Segítségükkel szisztematikusan tesztelhetô
a célrendszer funkcionalitása, kiküszöbölhetôk
a tipikus hibák és ezáltal nagyban növelhetô a
rendszerek biztonsági szintje és minôsége.

Irodalom

Flinder whitepaper & test metodology
http://www.flinder.hu/library/index.html

Trusted Computing Group
http://www.trustedcomputinggroup.org

OpenTC
http://www.opentc.net

Buffer overflow
Aleph1, Phrack Magazine (Vol.7, Issue 49, File 14)
http://www.phrack.org./archives/49/p49-14

Heap overflow
Matt Conover, w00w00 Security Team
http://www.w00w00.org/files/articles/heaptut.txt

Integer bugs
Phrack Magazine
(Vol. 0x0b, Issue 0x3c, Phile #0x0a)
http://www.phrack.org./archives/60/p60-0x0a.txt

Exploiting format string vulnerabilities
scut, team teso
http://julianor.tripod.com/teso-fs1-1.pdf

HÍRADÁSTECHNIKA

30 LXII. ÉVFOLYAM 2007/11

