
1. Bevezetés

Az Auger elektron spektroszkópiával (AES) [1] meg
tudjuk határozni a felület 1-3 atomi rétege vastag tarto-
mányának összetételét. Mivel egyszerû és viszonylag
nem túlságosan költséges, talán a legelterjedtebb felü-
let analitikai módszer. A fizikai paraméterek (információs
mélység, gerjesztési hatáskeresztmetszetek, Auger
visszaszórási tényezô stb.) ismerete mellett a spektru-
mok kiértékelése sem túlságosan bonyolult. A paramé-
terek meghatározásának hatékony eszköze az MFKI-
ban kifejlesztett rugalmas elektronszórás spektrometria
(EPES) [2], az AES egyik kiegészítô módszere.

A módszer Harris 1968-as AES közleménye után in-
dult viharos fejlôdésnek [1]. Az MFKI-ban felismerve,
hogy a jövôben a felületanalitika alapvetô fontosságú
lesz, a legváltozatosabb területeken törekedtünk az AES
mielôbbi megvalósítására. Elsô lépésként a Vacuum Ge-
nerators (VG) gyártmányú LEED berendezésünket bô-
vítettük úgy, hogy AES spektrumok felvételére is alkal-
mas lett. Ez 1973-ban történt, amikor is ez lett az elsô
Auger spektrométer hazánkban [3]. A hengeres tükör
analizátort (CMA) alkalmazó Riber OPC 103 spektromé-
tert, aminek energia-felbontása sokkal jobb, mint LEED-
bôl átalakított fékezôrácsos spektrométeré, 1977-ban ál-
lítottuk üzembe. Ekkor már világos volt, hogy az Auger
fraktográfia, ami a tört felületek AES analízisét jelenti,
igen jól alkalmazható fémkutatásban. Ehhez természe-
tesen be kellett szerezni UHV-ben mû-
ködô törôszerszámot (a törés cseppfo-
lyós N2 hômérsékleten történik), ami a
tört felületek in-situ AES vizsgálatát te-
szi lehetôvé. Az akkori deviza nehézsé-
gek miatt az UHV mérôkamrát a Tungs-
ram Kutató építette meg. A teljes elektro-
nikát a KFKI (Tóth Ferenc) készítette
el, a KFKI NV-255 szinkron detektorát
alkalmaztuk a derivált üzemmódban [4].
Emellett megépítettük az analóg üzem-
módra alkalmas detektort is [5]. 

Rövidesen az AES egyik fô alkalmazási területe vé-
konyrétegek és multirétegek mélységi elemzése lett. En-
nek elve egyszerû; Ar+ ionbombázással a paraméterek
kedvezô beállításával (ionáram, energia, beesési szög)
szabályozott vastagságú rétegeket lehet lehántolni a
mintáról, melynek felületét AES-sel elemzik. Így az idô
függvényében az AES a minta mélységi összetételét
adja [6]. Az ionbombázás az anyageltávolításon túl ron-
csolja és így megváltoztatja a mérendô mintát. A mód-
szer eredeti változatában a roncsolódás mértéke függ
az eltávolított anyag mennyiségétôl és így a vizsgálha-
tó vastagság korlátozva volt. Ezen segített az A. Zalar
által bevezetett mintaforgatás [7]. Ezt a módszert való-
sítottuk meg Barna Árpád segítségével elôször ex-situ
[8] majd in-situ módón. Tovább javítja a mérés mélységi
felbontását a súrlódó beesésû ionbombázás és a ala-
csony ionenergia használata, amit szintén Barna Árpád
valósított meg. Az általa épített kisenergiájú ionágyúval
(amit egy magyar vállalkozás, a Technoorg Linda gyárt)
1-2 nm-es mélységi feloldást valósítottunk meg.

2. AES vizsgálatok 
híradástechnikai anyagokkal

Az elsô AES vizsgálatokat W huzal felületén, tûzjelzô
fotócellák Mo fotókatódján (Tungsram Kutató), továbbá
Si oxid és nitrid rétegeken (HIKI) végeztük [8] 
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Lektorált

1. ábra



A feladatok által megkövetelt módón folyamatosan
fejlesztettük az AES kiértékelési eljárásokat. Például a
fenti vizsgálatoknál elôször az rB Auger visszaszórási
tényezôt a Shimizu képlettel számítottuk, késôbb saját
kutatási eredményünkbôl vettük [9]. 

Az 1. ábra a Mo fotókatód spektrumában K, C és O-t
mutat, ami a fotókatód nem kívánt szennyezése. A spek-
trumot derivált üzemmódban vettük fel.

A 2. ábrán az AES mélységi feltérképezés egy korai
alkalmazását mutatjuk Si félvezetô kristály felületén ki-
alakított többrétegû kontaktus esetén. A 2/a. ábra a
minta felépítését mutatja. A 2/c. ábrán a hagyományo-
san felvett (nem forgatott minta 3 keV ion energia) mély-
ségi profilt mutatjuk; a rétegszerkezet szinte nem lát-
szik. Ha a vastag Ni réteg egy részét úgy távolítjuk el,
hogy ionbombázás közben forgatjuk a mintát, akkor a
profil minôsége jelentôsen megjavul, 2/b. ábra [8], de a
rétegek közötti átmenetek még mindig jelentôsen szé-
lesebbek, mint amit az elektronmikroszkópos kép alap-
ján várunk. Ezért volt szükség a módszer fent említett
további fejlesztésére.

Érdekes módon a módszer még ebben a viszonylag
fejletlen állapotában is értékes eredményeket adott.
50%Ni-50%Cr rádiófrekvenciás porlasztással készített
vékonyréteg ellenállások rétegszerkezetének hôkeze-
lés hatására történô változását vizsgáltunk AES mély-
ségi feltérképezéssel [10]. Megmutattuk, hogy a hôke-
zelés hatására a felületi rétegben feldúsul a Cr2O3 és
annak hosszával az oxid réteg vastagsága nôtt. Az AES
mélységi elemzést hôkezelés elôtt (3/a. ábra), 563 K 6
órás (3/b. ábra) és 100 órás hôkezelés után végeztük
(3/c. ábra). 

Hasonló vizsgálatokat végeztünk Ta ala-
pú vékonyréteg ellenállások hôkezelésénél
[11], ahol az AES mélységi elemzés hason-
ló oxidálási folyamatokat tárt fel. 

A merevlemezek olvasófejében lévô al-
kalmazott óriási mágneses ellenállású
(GMR) rétegszerkezet van. Az óriás mág-
neses ellenállást a Co/Cu/Co rétegek ad-
ják. Ezeknek tipikus vastagsága 1 (Co illet-
ve 2,3 (Cu) nm, azaz a Co réteg mind-
össze öt atomi réteg vastag. Ilyen mére-
teknél alapvetô fontosságú tudni, hogy a
határfelület hogyan néz ki. Egy modellkí-
sérletben ilyen réteget rendszert növesz-
tettünk, amit AES mélységi feltérképezés-
sel vizsgáltunk. 

Az eredményt a 4. ábra mutatja, a követ-
kezô oldalon. Az ábrán feltüntettük a mért
koncentráció-eloszlásokat és az azokból
származtatható eredeti (ini.) koncentráció
eloszlásokat. A megdöbbentô eredmény az
volt, hogy a Co/Cu határfelület elkent, míg
a Cu/Co határfelület éles [12]. Mûködôké-
pes GMR rétegek készítésekor ezért a két
határfelület készítésekor más technológiát
kell alkalmazni.
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2. ábra

3. ábra

Jelölések:
- - - - - - - C       – – – – Ni – . – . – O 
– .. – .. – N      _____ fém Cr      –x– oxidált 



3. Auger elektron spektroszkópia
a volfrámkutatásban

Külön fejezetet szentelünk a volfrám AES vizsgálatai-
nak. A W az izzólámpákban az izzószál anyaga, de a
fénycsövek, színes TV képcsövek és a teljesítmény elek-
troncsövek katódjaként ma is különösen fontos. Az MFKI
a hazai W kutatásokban jelentôs tudományos eredmé-
nyeket ért el.

Teljesen nyilvánvaló volt, hogy az Intézetben frissen
bevezetett AES-t próbáljuk alkalmazni az Intézet tradicio-
nálisan mûvelt volfrámkutatásban. Csak érdekességként
említjük meg, hogy a Harris által a GE-ben épített elsô
LEED-re alapozott rácsos AES elsô vizsgálata éppen
volfrámszálon történt; a felületi szegregációt vizsgálta.

Mi két kérdéskörhöz kívántuk az AES vizsgálatokkal
hozzászólni; az igen izgalmas és akkor még részben
nyitott káliumfázisok kérdéséhez (amik alapvetôk a meg-
felelô csúszási szilárdság eléréséhez), és hogy a szem-
csehatárokon jelenlévô szennyezôk befolyásolhatják-e
a szemcsehatárok mechanikai tulajdonságait. 

A káliumvizsgálatokhoz elsôként hazánkban és ak-
kor az egész szocialista táborban mi alkalmaztuk az
AES fraktográfiát. A módszer az AES igen jó felületi ér-
zékenységére épül és az AES készülék fejlesztésének
a legfôbb indoka volt. Azon alapul, hogyha egy anyag
egy kitüntetett felület mentén törik, akkor ennek a felü-
letnek a kémiai analízise AES-sel kényelmesen elvé-
gezhetô. Itt azt kell hangsúlyozni, hogy egy normál po-
likristályos fémben a szemcsehatárok koncentrációja 1
ppm alatt van, tehát ha ezeket 100% idegen anyag fe-
di be, akkor ennek az anyagnak a mennyisége kisebb
1 ppm-nél, ami térfogatanalízissel alig észlelhetô, vi-
szont az adott elrendezésben a fém tulajdonságait a
szegregált anyag határozhatja meg.

Az irodalom azt találta, hogy a volfrám tört felületén
mindig van kálium. Ez a megállapítás ellentmondott a
kálium-volfrám rendszerrôl kialakult tudásunknak. Vizs-
gálataink az utóbbit támasztották alá. Azt sikerült ugya-
nis megmutatnunk, ami akkor AES fraktográfiában is új-
nak számított, hogy a kétségtelenül helyes AES vizs-
gálatok interpretációjában van a hiba. 

Ugyanis ahogyan azt ko-
rábban említettük, a mód-
szer azt feltételezi, hogy az
AES-sel a felületen talált
anyag az, ami ott volt a tö-
rés elôtt is. Ez sok esetben
igaz is, de nem az igen spe-
ciális volfrám-kálium rend-
szer esetében. Itt ugyanis
egy igen furcsa helyzetben
vagyunk. A kálium, ahogy
ezt az MFKI volfrám-kutatói
jól tudták, az újrakristályo-
sodott huzalban, buborékok-
ban található. Másoldalról
viszont azt jól tudtuk, hogy
a kálium a volfrám felületé-

hez egy atomos rétegben igen erôsen kötôdik, hiszen
a kilépési munkát elektronvoltokkal csökkenti. Ezért ha
a huzal törésekor egy káliumbuborék kinyílik, az abból
származó kálium még szobahômérsékleten is igen gyor-
san diffundálva beterítheti a felületet. 

Ezt mutattuk meg úgy, hogy a káliumbuborékok meny-
nyiségét változtattuk hôkezeléssel és az elképzelések-
nek megfelelôen ekkor a tört felületeken kialakuló fe-
dettség a hôkezeléssel, azaz a buborékok számával
változott. Ezen vizsgálatok során azt is megmutattuk,
hogy a huzalban igen alacsony hôkezelés után még két-
dimenziós elterült káliumfázis is található. Ezek a vizs-
gálatok az [13,14] közleményekben ismertettük.

További izgalmas téma a volfrám területen: ellenál-
lásmérésekkel megállapították (Gaál, Uray és munkatár-
saik), hogy újrakristályosodás során az oldott vas meny-
nyisége csökken a volfrámban. Mivel a szennyezô vas
kipárolgáshoz a hômérséklet túl alacsony, ezért az ol-
dott vas csökkenésének magyarázatához más mecha-
nizmust kellett keresni. Felvetôdött, hogy a szemcseha-
táron gyûlhetnek fel a hiányzó oldott anyagok. A hô-
mérséklet azonban a szokásos szegregációhoz ala-
csony, azaz diffúzióval az oldott anyag nem kerülhet a
szemcsehatárokra. 

A volfrám újrakristályosodásakor azonban a szemcse-
határok igen nagy területeket „sepernek” át. Elképzel-
hetô, hogy a szemcsehatár szegregáció nem a szoká-
sos módón történik, azaz nem az oldott anyag megy a
szemcsehatárhoz, hanem a szemcsehatár mozgása so-
rán „felveszi” az oldott anyagot. Ennek a modellnek a
következménye, hogy elhanyagolható diffúzió esetén
is kialakulhat szemcsehatár szegregáció [15-20]. 

A 70-es években az intézetben kezdôdött alap- és
alkalmazott kutatások alapozták meg azt az MFKI-
TUNGSRAM ipari-kutatási együttmûködést, amit a jog-
utódok, az MFA és a GE, máig intenzíven folytatnak.
Ennek keretében legutóbb a tóriumoxiddal adalékolt
huzalokat vizsgálva megállapítottuk, hogy a mátrixban
lévô tóriumoxid nem képes a szál felületén olyan tórium
fedettséget létrehozni ami a begyújtást a lámpa késôb-
bi életében elôsegíti [21]. 
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