
1. Introduction

Nowadays, the object-oriented programming (OOP) is
the dominant paradigm of software engineering. The
solutions provided by OOP can be applied to facilitate
creating well-structured program as well as the code
reuse. That is the reason for its wide adoption and its
relative dominance. The concept behind the OO ap-
proach is that the program under development consists
of autonomous entities, so-called objects, whose func-
tionality is realized by the communications of these ob-
jects. This method, according to the experience, sup-
plies a well-structured solution even for complex sys-
tems [1,2].

If a complex problem is decomposed into objects,
the creation of the autonomous entities is focused
along with the encapsulation of the data and the rela-
ted operations. In this way, however, we have to igno-
re more important logical aspects of structuring and
grouping, such as persistence or debug, which charac-
teristically scattered across the code. This makes the
software difficult to comprehend and maintain. These
tangled but logically connected code parts that are
scattered across different module are called crosscut-
ting concerns.

An example for crosscutting concerns can be tra-
cing the execution of a program. Distributed applica-
tions frequently write a log file, which helps debugging
in case of an application error with collecting all the
function calls and exceptions.

In order to write a log file, each
class must contain program lines im-
plementing the log functionality, usu-
ally scattered, whereas the code parts
that perform logging are closely con-
nected: they realize the same func-
tion.

As another possible example [3] the UML class di-
agram of a simple figure editor is illustrated in Figure 1.
The FigureElement has two concrete descendants: the
Point and the Line.

The decomposition into classes seems promising:
both classes have a well-defined interface, and the da-
ta is encapsulated with the operations performed on
them. However, the screen manager must be notified
about the movement of each element. That demands
that each function performing movements should notify
the screen manager. The rectangle DisplayUpdating
frames the functions that should implement this featu-
re. Similarly, the rectangles Point and Line frame the
functions implementing concerns related to them. It is
worth noting that the DisplayUpdate square fits into no-
ne of the other rectangles in the figure, but it cuts ac-
ross them.

Extending the OO facilities, Aspect-Oriented Pro-
gramming (AOP) [4] offers a solution to the problem of
crosscutting concerns. AOP divides the program code
on the basis of the concerns that they contribute to the
operation of the program. Approaching the problem in
an AOP way, we can group the concerns into aspects
implemented separately and independently of each ot-
her, and then an aspect weaver application joins these
separate parts. Weaving is dependent on the particu-
lar AOP implementation it can happen either dynami-
cally at run-time or statically at compiling time or after
that.

18 VOLUME LX. • 2005/6

Introduction to
Aspect-Oriented Programming

LÁSZLÓ LENGYEL, TIHAMÉR LEVENDOVSZKY

{lengyel, tihamer}@aut.bme.hu

Key words: aspect-oriented programming (AOP), crosscutting concerns

Aspect-oriented programming is a fortunate extension to the wide-spread object-oriented paradigm. In this paper we present

the most important concepts of AOP based on the most widely used AspectJ approach. The problem of crosscutting concerns

is introduced, and the facilities provided by AOP are enumerated as possible solutions. The most popular implementations

(HyperJ, Composition Filters) are also mentioned briefly.

Figure 1.
Crosscutt ing Concerns

Reviewed

If OOP is applied, the implementation of the cros-
scutting concerns are scattered across the system.
However, if AOP mechanisms are used, the concern
surrounded by the rectangle DisplayUpdate can be im-
plemented using only one aspect. Besides these AOP
facilitates thinking in aspects also on the design level
along with realizing modularity.

The key point in modularization is that the program
parts constituting one unit can be supplied in one
physical unit as well. It is a general principle that the co-
hesion inside a module should be strong, and the mo-
dules should be loosely coupled. Using abstraction we
can highlight the common traits of different elements.
While the abstraction is rather vertical, separating the
crosscutting concerns we can achieve structuring our
system horizontally.

A programming paradigm or technology is mainly
determined by the type of abstraction it uses. The fre-
quent, repetitive code snippets or patterns mean the
lack of abstraction facilities. The redundancy is unwan-
ted, because a small change in the design may result
that several, not connected module needs to be chan-
ged.

2. Crosscutting Concerns

Separating concerns means the ability that we need to
identify and highlight those parts of the software which
realize a concrete intention or goal. Separation of con-
cerns primarily aims at decomposition of the software
into parts that can be treated more easily and compre-
hensible. A natural question is how to accomplish this
decomposition. What are the functions that should be-
long to a class or an aspect?

It is important to notice that the crosscutting is con-
nected with a specific decomposition, since the cros-
scutting concerns cannot be separated completely.
The basic design rule is to consider the fundamental
concerns as a primary abstraction, and to implement
them in classes and their extensions with aspects is do-
ne afterwards if needed.

Regarding the figure editor example, there are two
important design concerns: representing the graphical
elements and tracing the movement of them. The clas-
ses depicted in Figure 1 represent the first concern.
Each graphical class encompasses its inner data struc-
ture, which can be extended with aggregation and in-
heritance. The second concern, tracing the movement
of the elements, should be implemented as separate
classes, but the firs concern prevents this, because the
functions realizing the movements are part of the grap-
hical classes because of the encapsulation. The sys-
tem could have been designed around the concern tra-
cing the movements, but in that case the graphical
functionality would have crosscut the tracing classes.
Which solution is better?

The problem can be solved with the help of the do-
minant decomposition. The software – similarly to

books – is written like text, as the book consists of
chapters and paragraphs, the software has modules
e.g. classes. The modules constituting the dominant
decomposition contain uniform concerns and most of
the time they can be executed separately. A dominant
module cannot contain concern crosscutting several ot-
her modules. These are going to be crosscutting con-
cerns.

Typical crosscutting concerns are synchronization,
monitoring, buffering, transaction handling or context-
sensitive error handling. Crosscutting concerns can be
very high-level, e.g. security or the aspects of quality of
service (QoS).

3. Aspect-Oriented Programming

The AOP paradigm was created in the mid-90s, and it
has become an important area of research related to
programming languages, so it is expected to gain mo-
re popularity.

It is apt to say that every programming language
has a feature since Fortran, that facilitate to separate
the concerns with subroutines. Subroutines are still
useful constructs, and OOP cannot exist without block
structures or structured programming. Similarly, AOP
does not replace the technologies in use.

It happens quite often that the concerns cannot be
realized by simple procedure calls, because a concern
gets mixed with other structural elements, and beco-
mes a fuzzy mess. The other disadvantage of subrou-
tines that the programmers working on the caller com-
ponent must be aware of the concerns, they must
know how to include or use them. Besides the subrou-
tines, AOP offers a call mechanism, where the develo-
pers of the caller components do not need to know
about the extending concerns, namely, about calling
the subroutine.

The two most important principle of AOP are the se-
paration of crosscutting concerns and the modularity
[5]. AOP has recognized that the boundary of modular
units is rarely the same as the boundary of concerns.
The modularization can be solved with certain con-
cerns, but the code implementing the crosscutting con-
cerns are scattered across the program, crosscutting
the modular units. The main goal of AOP is to make it
possible that the crosscutting concerns can be organi-
zed into autonomous modular units, thus it decrease
the complexity of the software product (code and/or de-
sign), and the reuse, readability and maintenance of
the program becomes simpler.

An aspect is a modular unit of implementation; it en-
capsulates a behavior, which affects several classes.
Using AOP we implement the application in an arbitrary
OO language (e.g. C++, Java or C#), then we deal with
the crosscutting concerns, which means including the
aspects. Applying the aspect weaver, finally, the execu-
table application is built via combining the code and
the aspects. As a result, the aspect becomes the part

Introduction to AOP

VOLUME LX. • 2005/6 19

of the implementation of several functions, modules, or
objects, thus increasing the reuse as well as the main-
tenance facilities.

The weaving process is depicted in Figure 2. (on
the next page). It is worth noting that the original code
does not need not to know anything about the exten-
ding aspect, if one translates it without weaving, the re-
sult is the original application. If the aspects are inclu-
ded, the result is the application extended with the
functionality of the aspects. It means that the original
code need not be changed; the same program is used
in both cases.

AOP enhances, but does not replace OOP. It offers
a different type of decomposition, in addition to clas-
ses, it introduces new element of modularization to re-
alize each aspect separately from the classes in a dif-
ferent place. AOP is built on OOP, the objects and
functions are not considered to be obsolete, aspects
are meant to be used together with them.

The enhancement provided by AOP is that the
entry point is declared by the function instead of the
caller, which is not aware of calling the function. If the
entry point of a function is given in the called part, it is
woven into the code (obviously, it compiles to function
call on the programming language level, but it is hand-
led by the weaver automatically). Since the called code
can be executed independently from its extension, as
it has already been mentioned, this is a useful feature.

E.g. for memory paging, operating systems use a
dirty bit to register the changes on the memory pages.
If there is a change, the modified data must be saved
to the storage. Using AOP techniques, handling the
dirty bit can be separated from paging: the system can
be executed with or without dirty bit handling, and the
functions related to dirty bit handling are physically in
the same place, instead of being scattered across the
code according to the entry points.

Now a question arises, namely, how to provide whe-
re we want a piece of code to be called such that it do-
es not appear in the caller part at all. The solution is the
join point. The join points mean those well-defined pla-
ces in the program, where the aspect interacts with the
other parts of the system.

The join points mean the places of the program text
or an execution point, so they can be divided into sta-
tic or dynamic join points, respectively. Static join points
are the first statement of a public function in case of
the logging example, which results in a log file where
the function call stack can be traced. Dynamic join po-
ints are connected with the events of the program exe-
cution like a method call (both inside of outside of the
function), attribute query, throwing an exception, initia-
lizing a class or an object.

Aspect reuse is a fundamental result of AOP. The
simple, small aspects facilitate the reuse of individual

pieces of code more. Learning from the expe-
riences and collecting aspects we can create
aspect libraries. An apt question is how to de-
al with the large number of aspects and what
notation should be used for them. This and si-
milar questions are expected to be resear-
ched in the next few years.

A really important but open issue is the se-
mantical correctness of the aspects. In case
of component-based systems there has
always been a question how to ensure the
correct operation of the components. The AO
approach offers far richer mechanisms than
those provided by interfaces or message-bas-

ed connections. Each aspect must thoroughly be exa-
mined from the point of specification and component
test. If we use an aspect, there is no guarantee that we
have the correct operation in every place where we
reuse it afterwards. A way must be found to describe
the operation of the aspects under specific circum-
stances.

Having presented the AOP, we briefly introduce the
three most popular AOP implementations.

AspectJ
The environment AspectJ (www.aspectj.org) is a na-

tural extension to Java: every Java program is an As-
pectJ program as well. The AspectJ introduces the fol-
lowing new programming language constructs for the
AOP definitions [6,7]:

• aspect: A new programming unit, which encapsula-
tes the crosscutting concerns. An aspect can con-
tain the definitions of pointcuts, advices and intro-
ductions. Similarly to classes, they can have met-
hods and data members.

• pointcut: It defines a set of dynamic join points with
the help of a logical expression. These are called
pointcut descriptors. Pointcuts can be parameteri-
zed, the objects of the pointcut environment can be
passed to the advice in the parameters.

• advice: It is a programming unit similar to methods.
Advices are always associated with a pointcut. Their
body contains the behavior that should be executed
in the join point described by the pointcut.

• introduction: Introductions help to define new data
members and methods in classes. Here the join po-
int is the class.

HÍRADÁSTECHNIKA

20 VOLUME LX. • 2005/6

Figure 2. Aspect Weaver

In order to decide the runtime order in which the ele-
ments of the aspects associated with the same join po-
int are executed, precedence relations have been es-
tablished within the aspects [8].

Classes and aspects are not on the same level in
AspectJ [9,10].

Whereas classes can be regarded as autonomous
entities, aspects can be interpreted along with the clas-
ses whose crosscutting cede they contain. The as-
pects can be considered that they contain the modifi-
cations of the original program code. Therefore as-
pects cannot be compiled alone, their reuse is possible
on the source level only. The current AspectJ imple-
mentation works at compile-time only and the base pro-
gram code is also necessary [11].

Hyperspaces – HyperJ
The hyperspace approach (www.research.ibm.com/

hyperspace/index.htm) is based on the multidimensio-
nal separation of concerns. According to this principle
there are several concerns of different types in the
software, while the currently popular languages and
methods facilitate the decomposition driven by only
one concern. This phenomenon is called the tyranny of
the dominant decomposition. The basis of the domi-
nant decomposition is classes (OO languages), func-
tions (functional languages) and rules (rule-based pro-
gramming languages).

Hyperspaces facilitate identifying explicitly an arbi-
trary dimension of the concerns in the arbitrary phase
of the development process. The hyperspace model
uses the following definitions:

• hyperspace: It is for identifying the concerns.
Hyperspace means the set of the software building
blocks. E.g. classes in an OO environment, a met-
hod, or a data member. The hyperspace organizes
these elements into a multidimensional matrix. In
the imaginary coordinate system of the hyperspace
the concerns are the dimensions, and the coordina-
tes are the specific concerns within a dimension.
The coordinates of the units in the hyperspace de-
fine concern that the given unit describes.

• hyperslice: It encapsulates the concerns. The units
belonging to the same concerns are placed on the
same hyperslice. Defining hyperslices we can en-
capsulate the units related to the concerns.

• hypermodule: It serves as a basis to integrate the
concerns. A hypermodule encompasses a set of
the hyperspaces to be integrated as well as the int-
egrating relations describing the way of the integra-
tion and the relations between the hyperslices.

The tool HyperJ is a Java implementation for multi-
dimensional separation of concerns [12]. The HyperJ
performs the integration on the compiled hyperslice
packages, not on the source code, thus one can remo-
dularize the already existing applications for reuse. The
join points are static, their definitions are contained by
the specification of the hypermodule.

Composition Filters
Since in the OO languages the behavior is determi-

ned by the messages passed between the objects, a
large scale of the behavioral modifications can be achi-
eved by manipulating the incoming and outgoing mes-
sages (typically the function calls) of the objects.

In the model of composition filters (http://trese.cs.
utwente.nl/composition_filters/) the manipulation and
analysis of the messages are performed by filters. The
model expresses the crosscutting concerns as the mo-
dular and orthogonal extensions of the objects. The
modularity is ensured by the well-defined interfaces of
the filters, and they inherently independent from the im-
plementation of the objects [13,14]. The filters are ort-
hogonal to each other, because in their specification
there is no reference to other filters.

4. AOP and
crosscutting constraints

Aspect-Oriented Software Development (AOSD) [4] is a
new technology that has introduced the separation of
concerns (SoC) in software development. The methods
of AOSD facilitate the modularization of crosscutting
concerns within a system. Aspects may appear in any
stage of the software development lifecycle (e.g. re-
quirements, specification, design, implementation etc.).
Crosscutting concerns can range from high-level no-
tions of security to low-level notions like caching and
from functional requirements such as business rules to
non-functional requirements like transactions. AOSD
has started at the programming level of the software
development life-cycle and the last decade several as-
pect-oriented programming languages have been in-
troduced.

Aspect-oriented programming eliminates the cros-
scutting concerns in the programming language level,
but the aspect-oriented techniques must be applicable
on a higher abstraction level as well to solve this issue.
In [15] an aspect oriented approach is introduced for
software model containing constraints where the domi-
nant decomposition is based upon the functional hier-
archy of a physical system.

The modularization of crosscutting concerns is also
useful in model transformation. Model transformation
means converting an input model available at the be-
ginning of the transformation process to an output mo-
del or to source code. Models can be considered spe-
cial graphs; simply contain nodes and edges between
them. This mathematical background makes possible
to treat models as labeled graphs and to apply graph
transformation algorithms to models using graph rewri-
ting. Therefore a widely used approach to model trans-
formation applies graph rewriting [16] as the underlying
transformation technique, which is a powerful tool with
a strong mathematical background.

The atoms of graph transformation are rewriting ru-
les, each rewriting rule consists of a left hand side

Introduction to AOP

VOLUME LX. • 2005/6 21

graph (LHS) and right hand side graph (RHS). Applying
a graph rewriting rule means finding an isomorphic oc-
currence (match) of the LHS in the graph the rule be-
ing applied to (host graph), and replacing this sub-
graph with RHS. Replacing means removing elements
that are in the LHS but not in the RHS, and gluing ele-
ments that are in the RHS but not in the LHS.

In general, graph rewriting rules parse graphs only
by topological concerns, but they are not sophisticated
enough to match a graph with a node which has a spe-
cial property or there is a unique relation between the
properties of the parsed nodes.

In case of diagrammatic languages, such as the
Unified Modeling Language (UML), the exclusive topo-
logical parsing is found to be not enough. To define the
transformation steps in a more refined way – beyond
the topology of the graphs – additional constraints
must be specified which ensures the correctness of the
attributes among others.

Dealing with constraints provides a solution for the
unsolved issues, because topological and attribute
transformation methods cannot perform and express
the problems, which can be addressed by constraint
validation.

The use of the constraints in graph transformation
rules and in graph rewriting is found to be useful.
Often, the same constraint is repetitiously applied in
many different places in a transformation.

E.g. we have a transformation which modifies the
properties of Person type objects and we would like the
transformation to validate that the age of a Person is
always under 200 (Person.age < 200). It is certain that
the transformation preserves this property if the con-
straint is defined for all rewriting rule element whose
type is Person (Figure 3/b).

It means that the constraint can appear several ti-
mes, and therefore the constraint crosscuts the whole
transformation, its modification and deletion is not con-

HÍRADÁSTECHNIKA

22 VOLUME LX. • 2005/6

Figure 3. A sample metamodel and a transformation step with a crosscutting constraint
a) Metamodel b) Transformation step

a)

b)

sistent because such an operation has to be perfor-
med on all occurrence of the constraint. Besides this
often it is difficult to reason about the effects of a com-
plex constraint when it is spread out among the num-
erous nodes in rewriting rules.

It would be beneficial to describe a common con-
straint in a modular manner, and to designate the pla-
ces where it is to be applied. We need a mechanism to
separate this concern. Having separated the constra-
ints from the pattern rule nodes, we need a weaver
method which facilitates the propagation (linking) of
constraints to transformation step elements.

It means that using separation and weaver method
we can manage constraints using AO techniques: Con-
straints can be specified and stored independently of
any graph rewriting rule or transformation step node
and can be linked to the rewriting rule nodes by the we-
aver.

To summarize the main idea of the AO constraints,
we can say that one can create the constraints and
the rewriting rules separately, and with the help of a
weaver constraints can be propagated optional time to
the rewriting rule nodes contained by the transforma-
tion steps. Therefore constraints are similar to the as-
pects in AOP.

5. Conclusions
and future work

AOP is a language-independent construct, a concept
above the implementations. In fact, it can remedy the
shortcomings of the programming languages (not only
OO) with a simple and hierarchical decomposition.

The AOP concepts have been implemented in
several programming languages: C, C++, Java, Perl,
Python, Ruby, SmallTalk and C#. The research com-
munity targets Java the most, thus the most sophisti-
cated tools and environments are available in this
language.

In the field of software engineering the long-term is-
sues of the software lifecycle play a more important ro-
le nowadays. These include the problems of simplifying
the development, maintenance, being able to accom-
modate to changes or reuse. AOP helps to achieve
these goals with ensuring a model more flexible and
working on a higher abstraction level than the OO pa-
radigm.

The number of publications is quite large. As a star-
ting point we recommend the special issue of CACM
devoted to the topic [17] and the web sites of each im-
plementation.

References

[1] Czarnecki, K. and Eisenecker, U.W.: Generative
Programming: Methods, Tools and Applications.
Addison Wesley, Boston, 2000.

[2] Dijkstra, E.W.:
A Discipline of Programming. Prentice-Hall, 1976.

[3] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales,
Karl Lieberherr, Harold Ossher:
Discussing Aspects of AOP,
CACM Vol. 44, Issue 10 (October 2001)

[4] Aspect-Oriented Software Development,
http://www.aosd.net/

[5] Tzilla Elrad, Robert E. Filman and Ataf Bader:
Aspect-oriented Programing,
CACM Vol. 44, Issue 10 (October 2001)

[6] Gregor Kiczales, Erik Hilsdale, Jim Hungunin,
Mik Kersten, Jeffrey Palm and William G. Griswold:
An Overview of AspectJ. J. Lindskov Knudsen (Ed.):
Proceedings of the 15th ECOOP, Budapest, 2001,
pp.327–353.

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin,
Mik Kersten, Jeffrey Palm and William G. Griswold:
Getting started with AspectJ,
CACM Vol. 44, Issue 10 (October 2001)

[8] Kiczales, G., et al.:
An overview of AspectJ. In Proceedings of
the 15th European Conference on OOP (ECOOP).
Springer, 2001.

[9] The AspectJ Programming Guide, www.aspectj.org
[10] Bill Griswold, Erik Hilsdale, Jim Hugunin, Wes Isberg,

Gregor Kiczales, Mik Kersten:
Aspect-Oriented Programming with AspectJ,
http://www.aspectj.org

[11] The AspectJ Primer, www.aspectj.org/doc/primer.
[12] Peri Tarr, Harold Ossher:

Hyper/J User and Installation Manual,
http://www.research.ibm.com/hyperspace
http://www.math.klte.hu/~espakm/GOF/hires/
Pictures/mvc.gif#

[13] Mehmet Aksit, Bedir Tekinerdogan:
Solving the modeling problems of object-oriented
languages by composing multiple aspects using
composition filters, 1998.

[14] Mehmet Aksit, Lodewijk Bergmans:
Software evolution problems using composition filters.
ECOOP 2001, Budapest.

[15] Jeff Gray, Ted Bapty, Sandeep Neema:
Aspectifying Constraints in
Model-Integrated Computing, OOPSLA Workshop
on Advanced Separation of Concerns in
Object-Oriented Systems, Minneapolis,
MN, October 2000

[16] Rozenberg (ed.),
Handbook on Graph Grammars and Computing by
Graph Transformation: Foundations,
Vol. 1., World Scientific, Singapore, 1997.

[17] Communications of the ACM,
Vol. 44, Issue 10 (October 2001)

Introduction to AOP

VOLUME LX. • 2005/6 23

