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Egy sokvaltozés, akar tébb szaz bizonytalan eseményt is tartalmazé targyteriilet szakért6i hattértudason, szakcikkeken és
statisztikai adatokon alapulé valészinliségi modellezése tébb szintre és fdzisra tagolodo feladat. Egyrészt tartalmazza a
targyteriilet numerikus eloszlasanak, a fiiggetlenségi és az okozati reldciéknak, mint egymasra épulé szinteknek a modelle-
zését. Masrészt felbleli a priori ismeretek szakért6t6l, tuddsbdzisokbdl, a szemantikus webrél és szabadszéveges forrdsok-
bdl térténd kinyerését és formalizdlasat, majd statisztikai adatokkal valé kombinalasat és egy déntéselméleti keretben valé
hasznalatat, azaz a tuddsmérndkség, a gépi tanulds és kdvetkeztetés terliletét is. A cikkiinkben a Bayes-halé modellosztalyt
(reprezentdciot) mutatjuk be, amellyel ezek a feladatok sikerrel oldhaték meg. Ismertetjiik a Bayes-statisztika keretrendszerét,
amely a Bayes-haldk alkalmazdsanak nem sziikségszerl, de gyakori kérnyezete. A mddszer gyakorlati alkalmazasat az dlta-
lunk kifejlesztett rendszer egy orvosbioldgiai feladatra, a petefészekrdk targyteriletre térténé alkalmazasan keresztil illusz-
traljuk, illetve attekintjik a jelenleg létezé ipari alkalmazasokat. Végil kitériink az ismertetett modell gyengeségeire és va-

zoljuk az ezeket kikiisz6bdIni kivdné kutatasi iranyokat.
1. Bevezetés

A Bayes-halé alapu alkalmazasok térhoditasa a 90-es
években kezdddott el [17], kezdetben f6leg orvosi di-
agnosztikai és el6rejelzd rendszereknél. Az elmult né-
hany évben a felhasznalasi kér olyan valtozatos ter(ile-
tekkel bdvdlt, mint pénziigyi, telekommunikécioés vagy
hadszintéri dontéstamogatas és hirszerzgi informaciok
integralasa.

A felhasznal6i viselkedéshez kapcsolédé alkalmaza-
sok két f6 iranyvonal mentén fejl6dtek, egyrészt a sze-
mélyre szabott informacidszolgaltatas terén, mint pél-
daul a felhasznalot segité sugérendszerek [18], vala-
mint az informéaciés rendszerek biztonsaga terlletén
[32], ahol a rosszindulatu felhasznalok kiszlirése a cél
a viselkedésmintazatok vizsgalta alapjan. Ehhez ha-
sonlé osztalyozasi feladat a spam levelek kisz(irése,
melyre szamos Bayes-halon alapulé megoldas sziile-
tett [28].

Komplex rendszerek mikddtetésénél, legyen az moz-
donyszerelés [25] vagy nyomtatérendszer karbantartas
[29], ahol a diagnosztika a bonyolult felépités és bi-
zonytalansag miatt egyszerl szabalyalapi moédszerek-
kel nem kovethetd, szintén hatékonyan alkalmazhaté a
bayesi megkdzelités. Mindemellett kiilénbdz6 dontés-
tamogatasi rendszerekben [30] és ezen belil, a kocka-
zat-el6rejelzés [26] terén is jelent8s pozicidt tdltenek
be a Bayes-halé alapu alkalmazasok. Egyes terllete-
ken, mint a Bayes-halé alapi adatbanyaszatnal [23]
vagy az emlitett kockazat-el6rejelzésnél a Bayes-hald
tanuldsat maga a felhasznal6 iranyithatja.

A kovetkez8kben attekintjik a Bayes-hald6 modell-
osztalyt, annak egy gyakori alkalmazasi kérnyezetét, a
Bayes-statisztikat és bemutatunk egy orvosbiolégiai al-

40

kalmazast az integralt adat és szévegbanyaszat teriile-
tén. A 2. fejezet attekintést ad a Bayes-statisztikarol,
majd ismertetjik a Bayes-halo reprezentaciét és annak
kézi konstrualasahoz, tanulasahoz és az azzal térténé
kdvetkeztetéshez kapcsol6do fogalmakat, algoritmuso-
kat és metodoldgiakat. A 4. fejezet alkalmazasi terlle-
teket mutat be, illetve ismerteti kutatasainkat, végil pe-
dig a Bayes-halok tovabbfejlesztési iranyaira adunk ki-
tekintést.

2. Bayes-statisztikai modszerek

2.1. A valdsziniiség bayesi értelmezése

A cikkben vizsgalt Bayes-statisztika és a Bayes-ha-
16 modellosztaly kézds alapvetd célja, hogy a bizonyta-
lan hattértudason és megfigyeléseken alapuld kdvet-
keztetések szamara axiomatikus alapot és gyakorlati al-
kalmazashatdsagot biztositson. A fellép8 bizonytalan-
sagnak szamos oka lehet, példaul a tudas kinyerése
soran alkalmazott mddszer, az adatgydjtési eljaras, vagy
a tudas hianya, esetleg figyelmen kivil hagyasa.

A Bayes-statisztikai modszertan a bizonytalansag
kezelésére a valoszinliségi keretrendszert alkalmazza,
va, szemben a mérndki gyakorlatban elterjedtebb, a re-
lativ gyakorisagok hatarértékein alapuld, ugynevezett
frekventista értelmezéstél. A szubjektivista értelmezés-
ben a valészinliségeket az események bekdvetkezté-
ben val6, adott kontextushoz tartozé a priori hiedelem-
nek, elvarasnak, egyfajta meggy6z6dési mértéknek te-
kintjlk.

Az axiomatikus szarmaztatasnal megmutathatd, hogy
egy dontési problémaban minden eseményhez rendel-
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het6 egy pozitiv valés szam, mely az adott esemény
valészinlségeként értelmezhet6 és egy hasznossagi
érték, melyekkel a preferencidk egzaktul reprezental-
hatok és racionalis dontések hozhatok. (Egy déntési
probléma egy (E, C, A, <) négyessel definialhaté, ahol ‘E’
az események, ‘C’ a kdvetkezmények, ‘A" a lehetséges
cselekvések halmaza, ‘<’ pedig az ‘A’ elemei feletti prefe-
renciainkat tikr6z8 rendezés [6].)

2.2. A bayesi modell

A bayesi médszertan tovabbi axiomatikus alapjat a
reprezentacios tételek [6] jelentik, ezek megmutatjak,
hogy egy végtelen felcserélhetéséget teljesitd eloszlas
(azaz amelyben barmely ‘Tt permutaciéra p(xy,...X,) =
P(Xr1)r---Xmgny))» reprezentalhato egy alkalmas adatge-
neralasi parametrikus modellosztallyal és egy e feletti
eloszlassal.

A valdszinliség szubjektivista értelmezésére és a
fenti tulajdonsagu modellosztalyok Iétére alapozva ja-
vasolhaté a Bayes-statisztikai keretrendszer, amelyben
a megfigyelési adatokat valdészinliségi valtozok altal
paraméterezett modellegylittesekbdl szarmaztatjuk, az-
az a megfigyelések és a modelparaméterek ugyanolyan
modellezési szinten helyezkednek el.

Gyakorlati megkdzelitésekben az alkalmazott modell-
osztaly paraméterezését hierarchikusan tagoljak, leg-
gyakrabban a kévetkez6 mddon, amit a cikkben is ko-
vetlink: egyrészt a modelltér diszkrét elemek (a lehetsé-
ges modellstrukturak) halmaza, masrészt hozzajuk nu-
merikus paraméterek tartoznak.

2.3. Kivetkeztetés

A kdvetkeztetés soran a feladat, hogy megbecsiiljik
egy adott esemény, vagy egy modell feltételes valdszind-
ségét az alapismereteink és a megfigyelési adatok sze-
rint. Az elsé esetben prediktiv, a masodikban paramet-
rikus becslésrdl (a posteriori eloszlas szamitasarol) be-
széliink. Mindkét esetben a Bayes-tételbdl indulunk ki,
amelynek segitségével események feltételes valoszind-
ségét szamithatjuk (a tovabbiakban D az adatokat, G
egy strukturat, 8 pedig egy paraméterezést jeldl):
P(D|G,0)P(G,0)

P(D)

Az a posteriori eloszlast (réviden posteriort) az el6-
z6leg emlitett modelltér egy struktirajanak paramétere-
zésére, vagy magara a struktirak terére is kiszamithatjuk.
A paraméterek esetén a képlet formailag megegyezik
(1)-gyel, a struktdrakra vonatkoz6 pedig a paraméterek
kiintegralasa utan adodik:

J'P(D |G.0)P(G.0)do
P(D)

Predikci6 esetén még egy lépést tesziink: a keresett
valészinlséget kiszamitjuk minden |étez6 modellire, és
ezeknek a modellek a posteriori valészinliségével su-
lyozott atlagat vesszik:

p(x| D)= zp((}k |D}fp(rIb*k)p((:iA |G,,D)do, (3)

(1)

P(G,0|D) =

P(G| D) 2
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2.4. Monte Carlo modszerek

A fenti posteriorok gyakran nem mintavételezhet6k,
ezért Monte Carlo mddszereket kell alkalmaznunk, pél-
daul a fontossagi mintavételezést vagy a Markov-lanc
Monte Carlo (MCMC) modszerek egyikét [14]. A poste-
rior vizsgalata helyett a feladat gyakran egy vagy tébb
f=E, ., [f(x)] alaku varhat6 érték becslésére egysze-
rlisédik. Ez megtehet6 a kdvetkezd Iépésekkel, melyek
helyességét az MCMC modszereknél igazolt nagy sza-
mok térvénye (2. pont) és centrdlis hatareloszlas tétel

(3. pont) biztositja [14]:
I. a{x}' mintavételezése

2. f becsléseaz f -7 f(x,) képlet alapjén

Ll

konfidenciabecslés az ‘7 - /‘ elterésre

A Monte Carlo mintavételezés mellett még gyakori a
meghatarozott szamu, legnagyobb a posteriori val6szi-
nliségl modellstruktdra alapjan térténd kiszamitas, mely
legegyszerlibb esetben egyetlen, igynevezett MAP (ma-
ximum a posteriori) modell hasznéalatat jelenti. A legna-
gyobb valészinliségl modell(ek) meghatarozasat a ta-
nulasrél szol6 fejezet targyalja.

2.5. Bayes-statisztikai megkdzelités elényei

A kovetkez6 listaban réviden dsszefoglaljuk a fentebb
ismertetett bayesi moédszertannak a klasszikus statiszti-
kaval szembeni elényeit [27]:

+ A paraméterek bizonytalansagat a felettik definialt
eloszlassal jellemezzik, igy minden statisztikai kovet-
keztetés egy direkt valdszinlségi allitas, ami az auto-
matizalt tébblépéses tanulasi rendszereknél és tudas-
bazisok generalasanal igen elényods.

* A paraméterbecslés egy inverzios feladatként fog-
hato fel, hisz itt kizarélag az adatbol kdvetkeztetlink ar-
ra a paraméterre, amely annak generalasat meghataroz-
ta. A Bayes-tétel pontosan ezt az inverziét formalizélja,
igy a kovetkeztetést a hipotetikus viselkedés figyelmen
kivil hagyasaval végzi, szemben a klasszikus statiszti-
ka egyes mddszereivel.

* Az a priori eloszlasok (réviden priorok) hasznalata
alkalmas az el6ismeretek dsszegzésére vagy akar a tel-
jes ismerethiany kifejezésére is.

* A priorok — mivel leggyakrabban korabbi megfigye-
Iéseken vagy vizsgalatokon alapulnak — az ismeretszer-
zési folyamat egyes fazisainak tekinthetdk, hisz Gj tuda-
sunkat (az a posteriori eloszlast) ez alapjan szerezzlk.

* A bayesi kdvetkeztetés a Bayes-tétel segitségével
egyenrangi modon, normativan kombinalja az elisme-
retekben és az adatokban rejlé informaciokat. igy a
Bayes-tétel hasznalata az adatok és elGismeretek egy-
fajta sulyozasat valositja meg: az adatok mennyiségé-
nek névekedtével azok befolyasa is né a posteriori el-
oszlasra.

* Az a posteriori eloszlas hasznélata pontbecslés he-
lyett a predikcié soran nem csak a legvalészin(ibb kon-
figuracio alapjan szamol, hanem figyelembe veszi a ke-
vésbé valdszinli eseteket is, ami a modell komplexitasa-
hoz képest kis mennyiségl megfigyelés esetén fontos.
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3. Bayes-halok

A val6szinliségi megkdzelitésben bizonytalan tudasun-
kat sztochasztikus valtozék egylttes eloszlasaval rep-
rezentaljuk. A szisztematikus struktiraval nem rendel-
kezé targyteriletek esetén (szemben példaul a kép- és
hangfeldolgozassal) az ilyen eloszlasok modellezésére
hasznalt elsédleges eszkdzt ma a Bayes-halok jelentik.
Ezekben egy iranyitott kérmentes grafban (DAG - di-
rected acylic graph) reprezentaljak a valtozokat és a
koztik 1év6 0sszefliggéseket: minden csomépont egy-
egy valtozét jeldl, és minden csomoponthoz tartozik egy
lokalis feltételes valészinliségi modell, amely leirja a val-
tozé flggését a szileitdl (a pontos definiciét a kdvet-
kezé fejezet tartalmazza).

Mint reprezentacios eszkdz, egy Bayes-halé haromfé-
le értelmezést kaphat, ezek a felsorolas sorrendjében egy-
re er6sebb modellezési, értelmezési lehetdséggel birnak:

» Tekinthet6 egyszer(ien az egyiittes eloszlas egy ha-
tékony abrazolasanak, hisz a csomoépontonkénti felté-
teles valészinliségi modellekre val6 faktorizalassal a fel-
hasznalt paraméterek szama jelent6sen csdkken.

» Egy adott struktira meghatarozza, hogy az abra-
zolt eloszlasban milyen feltételes fliggések és fliggetlen-
ségek lehetnek, azaz az élek tekinthet6k a kozvetlen va-
teljes graf a reprezentalt eloszlas fliggési térképének.

* Az el6z6nél is erésebb a kauzalis értelmezés, mely-
ben minden élt az érintett két csomoépont kézotti ok-oko-
zati 6sszefliggésként értelmezziik.

3.1. A valésziniiségi definicid: szintaxis és szemantika
Egy Bayes-hald struktiraja és a reprezentalni kivant
eloszlas kozti kapcsolatot az alabbi négy feltételre ala-
pozhatjuk, melyekrdl belathaté [9], hogy ekvivalensek.
* AP(Xq, ..X,) eloszlas faktorizalhaté a G DAG szerint,

ha: p(x,, x,)- [P, | Pa(x,)).

ahol Pa(X;) az X; csomépont sz(l6i halmaza.
* A P(Xy, ..X,) eloszlasra teljesil a sorrendi Markov-
feltétel G szerint, ha

Vi=1.n:1(X,, |Pa(X, )| {X

TI_,IP|

a(i) x(i) j{j}\l)a(X:rH]))P

ahol az I(X|Y|Z) relaci6 az X feltételes fliggetlensé-
gét jelenti a Z-161 Y feltétellel, Tt pedig a struktira
egy topologikus rendezése.

* A P(Xy, ..X,) eloszlasra teljesll a lokalis (szLil6i)
Markov-feltétel G szerint, ha barmely valtozé
flggetlen nem-leszarmazottaitol, feltéve szlleit.

* A P(Xq, ..X,) eloszlasra teljesll a globalis Markov-
feltétel G szerint, ha

Vo, p,z2 CAX 3 (x| 2] p)g = 1(x| 2] ¥)ps

vagyis, ha z d-szeparalja’ x-et y-tol a G grafban,
akkor x fliggetlen y-tél, feltéve z-t.

Egy elfogadott definicié a Markov-feltételek altal adott
fligg6ségi rendszer tulajdonsagaira épit [24]: A ‘G’ ira-
nyitott k6rmentes graf a ‘P(U)’ eloszlas Bayes-haldja (U
az ésszes valtozé halmaza), akkor és csak akkor, ha
minden uOU valtozét a graf egy csomdpontja repre-
zental, a grafra teljesiil valamelyik (és igy az 6szszes)
Markov-feltétel, és a graf minimalis (azaz barmely él el-
hagyasaval a Markov-feltétel mar nem teljestilne).

Mig ez a definicié egyértelmien a valdszin(iségi flig-

getlenségek rendszerének reprezentaciojaként tekint a
Bayes-haldra, addig a mérndki gyakorlatban kdzkedvelt
az alabbi, praktikus meghatarozas:
(G, 6) paros,ha ‘G’ iranyitott kérmentes graf, amelyben
a csomopontok jelképezik U elemeit, 6 pedig csomo-
pontokhoz tartozé ‘P(X|Pa(X)) feltételes eloszlasokat le-
iré numerikus paraméterek dsszessége.

Fontos megjegyezni, hogy a definialt modellosztaly-
ban a lehetséges struktirak szama a csomoépontok sza-
maban szuperexponencialis, ez pedig példaul a kés6bb
targyalandé tanulas komplexitasat is befolyasolja.

Bar egy Bayes-halé egyarant tartalmazhat diszkrét
és folytonos valtozokat is, mi a tovabbiakban kizarélag
diszkrét, véges valtozdkkal foglalkozunk, feltéve tovab-
ba, hogy minden lokalis feltételes valdszintiségi modell
a multinomidlis eloszlasokhoz tartozik, igy a paraméte-
rek ugynevezett feltételes valoszin(iségi tablak (FVTk)
elemei.

Egy adott Bayes-hal6 struktiraja meghatarozza, hogy
az milyen fliggéseket irhat le (példaul kiilén komponen-
sekben lévé valtozok kdzt nem lehet fliggés), azonban
kulénbdzd strukturakhoz is tartozhat azonos implikalt
fliggési rendszer. Ha két struktirabdl ugyanazok a fel-
tételes fliggetlenségek olvashatok ki, a két grafot meg-
figyelés-ekvivalensnek mondjuk. Belathaté [24] hogy két
graf akkor és csak akkor megfigyelés-ekvivalens, ha ira-
nyitas nélkuli vazuk, illetve v-struktiraik (az A-B ~C ti-
pusU részgrafok ugy, hogy A és C kdzt nincs él) mege-
gyeznek.

A megfigyelési ekvivalencia segitségével a strukti-
rakat diszjunkt osztalyokba sorolhatjuk. Minden ilyen ek-
vivalencia osztalyt egy ugynevezett esszencialis PDAG?
gréffal reprezentalhatunk. Az esszencidlis graf vaza meg-
egyezik az osztalyba tartoz6 grafokéval, és csak azok az
élei iranyitottak, amelyek iranya mindegyik grafban meg-
egyezik (Un. kényszeritett — compelled — élek).

3.2. Kauzalis definicid

Az el6z6, tisztan valdszinliségi definiciok bevezeté-
se utan formalisan kénnyen attérhetiink a Bayes-haldk
kauzalis értelmezésére: egy (G, 6) paros kauzalis Bayes-
haléja a P(U) eloszlasnak, ha egyrészt a targyteriilet
valészinliségi modellje az el6z6 értelmezések szerint,
tovdabba minden él kézvetlen ok-okozati viszonyt jel-
képez.

1 ‘z’d-szeparalja ‘x’-et és ‘y’-t a ‘G’ grafban (x.y.z[JV(G)), ha minden ‘x’ és ‘y’ k6zdtt mend iranyitatlan ‘p’ utat blokkol, azaz, ha (1) ‘p’
tartalmazza ‘z’ egy elemét nem 6sszefuté élekkel, vagy (2) ‘p’ tartalmaz egy ‘n’ csomépontot dsszefutd élekkel, hogy ‘z’ nem tartalmazza

sem ‘n’-t, sem valamelyik leszdrmazottjat.

2 Egy PDAG (partially directed acyclic graph) graf vegyesen tartalmaz iranyitott és iranyitatlan éleket.
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Hasonloéan, itt is |étezik egy Markov-feltétel: egy P(U)
eloszlas és egy kauzalis reldciokat leiré G graf teljesi-
ti a kauzalis Markov-feltételt, ha G és P(U) teljesiti a lo-
kalis Markov-feltételt.

A Markov-feltétel teljesiilése biztositja, hogy minden
(kazualis) fliggés kiolvashat6 a grafbél, a masik iranyhoz,
ahhoz tehat, hogy minden a grafbol kiolvasott fliggés
teljestiljon az eloszlasban, annak stabilnak kell lennie.
Egy P(U) eloszlas stabil, ha létezik olyan G graf, hogy
P(U)-ban pontosan a G-bél d-szeparacidval kiolvasha-
16 fliggések és fiiggetlenségek teljesiilnek benne (pél-
daul megfelelé paraméterezés mellett eléfordulhat, hogy
egy A -B - C struktiraban A és C flggetlenek).

A fenti kauzalis definicid a modell és a targyterilet
Osszefliggéseinek értelmezését illetéen igen erds, a
megfigyelési adatok statisztika elemzésének kereteit meg-
haladé eszkodzt szolgaltat. Alkalmazasakor figyelembe
kell vennlink, milyen nem kauzalis kapcsolatok okozhat-
nak valoszinliségi dsszefliggést két valtozé kozott, az-
az milyen korlatai vannak a kauzalis értelmezésnek.

llyenek lehetnek példaul:

« Zavar6 valtozok: a két valtozo6 kozti fliggést okozhat-
ja egy kézds 6s (ugynevezett zavard valtozd) is.

« Kivalasztasi bias: a valtozok kézti fliggés lehet az
adatgyjtési mod kdvetkezménye is (példaul ha egy
orvosi adatbazisba csak a komolyabb megfazassal
kezelt betegek kerilnek be, akkor a laz és torokfa-
jas kozott direkt fliggést figyelhetlink meg).

» Az 8s-0k, leszarmazott-okozat megfeleltetés és a
DAG gréafstruktura kizarja a mechanizmusokban Ié-
v6 visszacsatolasok (ciklikussagok), illetve az oda-
vissza hatd okozatisag lehetdségét.

* A modelltér maga (azaz, hogy milyen valtozok sze-
repelnek, illetve azok milyen értékkészlettel rendel-
keznek) szintén befolyasolja, hogy milyen direkt flig-
gések jelennek meg (azaz a graf strukturat).

3.3. Bayes-halok és a tudasmérndkség

A fentebb definialt Bayes-hal6 a tudasmérndkség
eszkbzeként jelent meg a 80-as években, konstruala-
sa jellemz8en a szakért6kt6l szarmaz6 adatokbdl tor-
tént manudlisan. A kézi konstrualds még napjainkban
is jelent6s sulyt képvisel a Bayes-halok alkalmazasa-
ban, masrészt ahol az adathoz viszonyitva jelentés a
priori tudas all rendelkezésre, ott a Bayes-halék tudas-
mérndki alkalmazasa a bayesi keretrendszer alkalma-
zasanak egy kezdeti fazisat jeleni, nevezetesen a prior
konstrualast.

A tudasmérndkség metodikajara nagy hatassal volt
a nagy mennyiségl elektronikus targyterileti informa-
cié megjelenése, a megfelel6 mennyiségl statisztikai
adat elérhet6sége, valamint a Bayes-statisztikai alapu
gépi tanulasi modszerek elterjedése.

A felépitett tudasbazissal szemben kdvetelmény-
ként jelent meg a bayesi mddszerek alkalmazésakor,
hogy tdmogassa a priorok konstrualasat, hiszen a va-
I6szinliségekkel leirt a priori tudas és a rendelkezésre
allé adatok bayesi frissitéssel térténé kombinacidja szol-
galtatja a végs6 tudasmodellt. Mindemellett fontos, hogy
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a tudasbazis segitse komplex, akar szabad széveges
hattérismereteket is tartalmazo valészintiségi allitasok
megfogalmazasat, valamint tegye lehetévé a szakért6k-
t6l szarmazé szubjektiv informacid tarolasat, mely rele-
vans a bayesi, a priori tuddsmodell megalkotasanal.

Egy tudasbazis megépitéséhez olyan kérnyezetben,
ahol rendelkezésre all elektronikus targytertleti tudas,
elegendd statisztikai adat, valamint a megfelel6 bayesi
modszerek, az alabbi [épések sziikségesek (amelyekbdl
a specifikusokat részletezziik):

1) Célok, alkalmazasi terlilet és modellezési szintek
identifikacidja

Terminolégia és ontoldgia elfogadasa.

2) Nem rendszerezett tudds begyljtése

Ehhez a |épéshez tartozik az §sszes relevans elek-

tronikus és egyéb szdvegalapu informacidforras fel-

dolgozasa, ami magaba foglalja az a priori informa-

cié kinyerését klldnféle szévegbanyaszati metoédu-

sok alkalmazasaval, mint példaul az altalunk kifej-

lesztett mddszer, amit a kés6bbiekben mutatunk be.
3) Struktura kinyerése

A G DAG strukturak feletti p(G) priorok konstruala-

sa, melyek egyesitik a szakért6k altal megadott in-

formacidkat az elektronikus forrasokbdl kinyert infor-
maciokkal. A p(G) a priori eloszlast tébbnyire norma-

lizalatlan formaban lehet elallitani: példaul egy a-

dott referencia strukturatél valé eltérés alapjan

P(G|E) x 3;0<k<I,

ahol 0 a referenciatél valé tetszélegesen definialt
strukturalis tulajdonsagokbeli eltéréseknek a szama.
4) Paraméter és hiperparaméter kinyerése

A val6szinlségi paraméterek szamos moédon nyerhe-
t6k: adatbazisok, szakirodalom vagy szakérték szub-
jektiv véleménye alapjan. A p(6|G) paraméter prior
specifikacidja az altalunk vizsgalt diszkrét, véges e-
setben egy egyszer( modszerrel megtehetd, ha fel-
tehetjlik az egyes valtozékhoz és sziiléi értékkonfi-
guraciékhoz tartoz6 paraméterek figgetlenségét:

P(6] Gy, ) I—_[i—i ...nl_L—I .qiP(0i;| Go,B).

Egy szinte kizarélagosan hasznalt eloszlascsalad
tartoz6 P(6i,|Gy,&) megadasara a Dirichlet eloszlas
Dir(6i,]|a;;,; &), ahol az a;;,; hiperparaméter jelentése
a paraméterhez tartoz6 sziil6i értékkonfiguracio ko-
rabban megfigyelt eseteinek szamait jelenti [9].
Megmutathat6, hogy a Dirichlet csalad az egyetlen
lehetséges valasztas, ha az ugyanazon megfigye-
Iési ekvivalencia osztalyba tartozé G struktirakhoz
ekvivalens priorokat szeretnénk megadni, ami kauzalis
modellezésnél nem sziikségszer( [16].

Tovabbi feltevések mellett az is bizonyithatd, hogy
az 0sszes struktirahoz konzisztens p(6|G) definicio-
ja ekvivalens egy teljes modellhez tartoz6 pontpara-
metrizacionak és egyetlen korabban megfigyelt 6ssz-
esetszamot jelent6 hiperparaméternek a megada-
saval. E kett6 egy(tt valéjaban egy a priori adathal-
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mazt definial, ami korabban megfigyelt eseteket tar-

talmazza, igy az 6sszesetszamot virtualis vagy a pri-

ori mintaszamnak neveziink.
5) Erzékenységi analizis, verifikacié és valid4cid

A modellek posteriorjanak vizsgalata magaba foglal-
ja egyrészt az a priori eloszlasokra valo érzékeny-
ség vizsgalatat (ami kiléndsen fontos a tébb szak-
értét és tudasbazist is magaban foglalé automati-
zaltan szarmaztatott priorokndl), masrészt referen-
cia priorokkal valé 6sszehasonlitast. Mindkét eset-
ben gyakran sziilkséges a modellosztaly komplexi-
tasa miatt, egyrészt hogy modell jegyeket hasznal-
junk, masrészt hogy MAP modellre alapozzuk a vizs-
galatot.

Mint ahogy az lathatd, a tudasbazis épitése a bayesi
modellkiértékeléssel zarul. A kiértékelés tartalmazza az
adat és a modell kompatibilitdsanak vizsgalatat és az a
posteriori valészinliségek vizsgalatat, azaz a tudas-
mérndki folyamat |ényege az a priori modell konstruala-
sa a kés6bbi tanulasi folyamat szamara.

3.4. Kdvetkeztetés Bayes-halokban

Egy konkrét Bayes-haloban valé kévetkeztetés alap-
feladata a P(X = x|Y = y,G,6) mennyiség kiszamitasa,
azaz adott egy struktira és paraméterezése valamint
ismert a bizonyitékvaltozék (Y) behelyettesitése, kérdés
valészinlsége.

Koénnyen belathato [15], hogy a feladat NP-teljes (hi-
szen példaul visszavezethet6 a kielégithetéségi prob-
Iémara), szamitasigénye a csomopontok szamaban ex-
ponencialis. Ezért a gyakorlatban vagy szimulacién ala-
puld, kdzelité eredményt adé Monte Carlo médszereket
[14], vagy a grafot masodlagos struktirakba transzfor-
malé Ugynevezett junction-tree algoritmusokat [19] al-
kalmaznak.

Hogy P(X = x|Y = ¥) a mennyiséget kiszamithassuk,
azaz valddi bayesi predikcidt végezziink, a (3) képlet
szerinti 6sszegzést és integralast kell elvégezni. llyen-
kor az 2.4. fejezet kdzelitései alkalmazhatok.

3.5. Bayes-halok tanulasa

Mivel a teljes bayesi kdvetkeztetés annak komplexi-
tasa miatt csak kuldnleges esetekben hajthatd végre,
gyakran a teljes modelltér helyett csak egyetlen modellt
hasznalunk. Ha elegendd statisztikai adat all rendelke-
zésre, a fent bemutatott manudlis konstrualas mellett
szerepet kaphat az optimalis modell keresése, a fanu-
las, mely végezhetd a szakértdi modellbdl kiindulva, an-
nak finomitasaval, vagy tabula rasa alapon is. A tanu-
las, mint az optimalis modell keresése, a parametrikus
kévetkeztetés alkalmazasanak tekinthet6 és megmu-
tathato, hogy NP-teljes bonyolultsagu [10], az adatok
szlkséges mennyiségére kivant kdzelitési hiba mellett
[15] ad képletet.

A tanulas két szinten lehetséges: kereshetjiik adott
struktdra mellett az optimalis paraméterezést (paramé-
tertanulas), vagy a legjobb strukturat és annak paramé-
terezését (struktiratanulas). Az optimalitas valamilyen
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mérték szerint értendd, ez legegyszer(ibb esetben a
modell a posteriori valészinlisége.

A MAP modell keresése mellett elképzelhetd mas kri-
tériumfliggvény is, amely leggyakrabban az a posterio-
ri valészinliség egyenletes priorral, kiegészitve valami-
lyen, a struktira bonyolultsagat biintet6 taggal. Az ilyen
bintetés alkalmazasa felfoghaté a prior médositasa-
nak: minél er6sebb a biintetés, annal kisebb a bonyo-
lult strukturak valésziniisége. A leggyakoribb ilyen ming-
sitési fliggvény a bayesi informacid-kritérium fliggvény
(BIC — Bayesian information criterion), a képlete [11]:

log N
2

ahol ‘N’ a tanit6 mintak, |6] pedig a halé paraméte-
reinek szama. A logN-nel aranyos mellett még elképzel-
hetd N-ben linearis vagy polinomidlis biintetés is.

Szamitasigényét tekintve a tiszta a posteriori krité-
riumfliggvény, és a teljes, fliggetlen, azonos eloszlasu
mintak alapjan végzett tanulas a legegyszeriibb. Ekkor,
Dirichlet eloszlasu paraméterpriort feltéve, adott struk-
tlra a posteriori valoszinlisége egyszerd, zart formaban
szamithato [8]:

P(G| D) x P(G,D) =
(N} +7,=D! 5 (N, + N} ®)

z 9 .
P(G)H , H L
235 YT ARV § SV

és k. értékének az el6fordulasat, q; az i. valtozé szul6i
konfiguracidinak a szamat és r; az értékeinek szamat
jelenti (N;; a megfelel6 marginalis). Az N'j;, a megfelel6
virtudlis mintaszamokat jeldli (ezek elGismeretek hianya-
ban 1-nek valaszthatok).

Paramétertanulas esetén az optimalis paramétere-
zés az FVT-k kllon-kilén, relativ gyakorisagokkal valé
kitdltésével elérhetd, struktiratanulas esetén pedig min-
den csoméponthoz kilén megkereshet6 az optimalis
sz(l6i halmaz, feltéve hogy ismert a csomdpontok egy
kauzalis rendezése. (Egy kauzalis rendezésben a csomd-
pontok sziilei csak az 6ket megel6z6 valtozok kdzil keril-
hetnek ki. A kauzalis rendezés a reprezentans DAG csu-
csainak egy topologikus rendezése.) Ha ilyen informacio
nem all rendelkezésre, Ugyelni kell, hogy a DAG tulaj-
donsag ne sériljon, példaul tgy, hogy minden lehetsé-
ges sorrendet kilén megvizsgalunk.

BIC(G,D) =log P(D|G) - 6

’ (4)

ey

3.6. Bayes-halok tanulasa hianyos adatok alapjan

Amennyiben a tanit6 adatok hianyosak, azaz bizo-
nyos valtozok értéke nem minden esetben ismert a tanu-
las feladata joval nehezebbé vélik. llyenkor a paramé-
tertanulasban iterativ eljarasok hasznalhatok, a legis-
mertebbek ezek kdziil a gradiens alapu kézelit6 eljara-
sok vagy ezek robosztusabb valtozatai, a konjugalt gra-
diens és a skalazott konjugdlt gradiens algoritmusok
[7], vagy az expectation maximization algoritmus [13].

Strukturatanulas esetén, mivel a sz(il6i halmazok
nem tanulhaték kilén még adott sorrendnél sem, a tel-
jes struktarateret bejaré keresésre van szlkség. Mivel
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a lehetséges struktiradk szama a csomopontok szama-
val szuperexponencidlisan né, a gyakorlatban nem tel-
jes keresési eljarasokat kell alkalmazni, példaul moho
keresést vagy szimulalt leh(itést (ekkor az elemi 1épés
pl. egy él térlése, beszlrasa, vagy megforditasa lehet).

Ezek az eljarasok is azonban csak akkor miikédnek,
ha az adatokra teljesiil a véletlenszer( eltlinés (MAR —
missing at random) feltétele, azaz ha a bejegyzések el-
tinése nem fligg az eltlint értéktdl [13].

3.7. Jegytanulas

A jegytanulas soran bizonyos részstruktirak (jegyek)
meglétének valdszinliségét keresslk. llyen jegy lehet
a legegyszerlibb esetben példaul egy adott él meglé-
te, vagy Markov-hatar keresése. Egy X csoméponthal-
maz Markov-takaréja egy olyan Y halmaz, melyre igaz,
hogy ‘I(X|Y|U\(XuY))’' (azaz Y d-szeparalja X-et a hald
tobbi részétél). Egy csomopont vagy csoméponthalmaz
Markov-hatara annak minimalis Markov-takaréja. Ez le-
hetévé teszi egy szimmetrikus, paronkénti relacié defi-
nialasat a Markov-hatarbeliséget, az egymas Markov-
hataraban val6 el6fordulast (MBM(X,Y) — Markov boun-
dary membership). A jegytanulas alternativ megoldast
jelenthet a strukturatanulassal szemben, mivel ha segit-
ségével meg tudjuk allapitani a fent emlitett viszonyok
meglétének valdszinliségét (azaz, hogy egy csomo-
pont beletartozik-e egy masik Markov-hataraba), akkor
ezzel a MAP modell egy j6 kdzelitését konstrualhatjuk.

A kérdéses valbdszinliségek szamitasa, a bayesi ko-
vetkeztetés sémajat koveti, amibdl kévetkezéen 6ssze-
geznink kell azon struktdrak a posteriori valésziniisé-
gét, amelyek rendelkeznek a kivant jeggyel:

P(x|D)= ) P(G,|D) (6)
k1,1 1=1

Természetesen itt is alkalmazhatok kézelit6 Monte
Carlo modszerek, mivel a struktarak feletti 6sszegzés
tul szamitasigényes, hacsak nincsenek rendkivil pon-
tos a priori ismereteink a lehetséges strukturakrol.

4. Egy alkalmazasi teriilet:
petefészekrak-diagnosztika

ey

nosztikajanak kutatasa inspiracioként szolgalt az integ-
ralt széveg és adatelemzés altalanos problémainak a
vizsgdalataban és elvezetett egy Bayes-haldkat alkal-
maz6 rendszer kifejlesztéséhez.

A leuveni egyetem (KUL) villamosmérnoki karanak
(ESAT) egy csoportjaban (SCD/SISTA) az egyik szerz6
részvételével (A.P.) 1998-t6l folynak a kutatasok a pe-
tefészekrak preoperativ diagndzisaval és altalanos bio-
I6giai modellezésével kapcsolatban, egyittmikédve az
egyetem koérhazaval (Univ. Hospital Gasthuisberg). A
kezdeti kutatasok célja 1998 és 2000 kdzott a petefé-
szek daganatok preoperativ diagnosztikajaban hasz-
nalhaté6 matematikai, statisztikai modellek kifejlesztése
volt, a klinikan meglévd szakért6i tudas és az ott gydj-
tott adatok alapjan. A masodik fazisban 2000 és 2002
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kdzott egy nemzetkdzi konzorcium alakult, amely a vi-
lag vezet6 petefészekrak kutatéit és diagnosztait témo-
riti, az International Ovarian Tumor Analysis (IOTA) kon-
zorcium [31]. Ennek célja nagy mennyiség(i, azonos
protokoll szerint beszerzett és jelenlegi tudasunk alap-
jan igen részletes betegleiras 6sszegylijtése, illetve a
létrejott adatbazis alapjan a targyterllet atfogo statisz-
tikai elemzése. A harmadik fazisban 2002-t6l folytatédik
az IOTA konzorcium adatainak gydijtése és elemzése,
illetve a leuveni egyetem génchip laborjanak kézrem-
kddésével 2003-t61 megindult a daganatok genetikai
profiljdnak elemzése is. Jelenleg a masodik fazis ada-
tainak elemzése folyik, azonban a kifejlesztett médsze-
rek, kiléndsen, amelyek az integralt széveg és adat-
elemzést tdmogaté Bayes-halékon alapulnak, mar a har-
madik fazis szamara készlltek, a génaktivitas mintaza-
tok és a klinikai adatok egyUlttes elemzésére.

4.1. A probléma leirdsa

A petefészekrak korai diagnosztikaja kiemelkedd fon-
tossagu, mivel jelenleg a paciensek kétharmadat mar
csak el6rehaladott allapotban sikerll diagnosztizalni,
ami a kezelések esélyeit nagyban lerontja. A petefé-
szekrakhoz kapcsolédo a priori informaciék nagy meny-
nyisége és sokszintlisége jol illusztralja a ,integralt adat
és tudas” elemzés kihivasait altalanos problémakban
is.

A rosszindulatu daganat kialakulasanak magyara-
zatara tobb elmélet is Iétezik, amelyek az ovulaciok sza-
mahoz, a gonadotropinok szintjéhez, a karcinogén anya-
gokhoz, illetve az drékletes vagy szerzett genetikai ren-
dellenességekhez kapcsolédnak. A kockazatot befo-
lyasold ismert faktorok példaul a szllések szama, ter-
méketlenség, a teherbe esést segité hormonalis keze-
Iések, a szoptatasi id6szak hossza, hormonalis fogam-
z4sgatlok, karcinogének, mell- és petefészekrak csala-
di el6fordulasa, életkor, méheltavolitas. Tovabbi elérhe-
t6 orvosi mérések és megfigyelések példaul a daganat
alaktani és eresedési leir6i, vagy a tumormarkerek szint-
jei (példaul CA 125). A faktorok egy részének a hatasat
kvantitativan is ismerjik (bizonyos genetikai rendelle-
nességek esetén a kockazat megnévekedését), mas
faktoroknak azonban mar a megallapitasa, mérése is
erdsen szubjektiv [31].

4.2. A priori informdcidk

A petefészekrak preoperativ diagnosztikajahoz kap-
csolédé, klinikai gyakorlatban hasznalt valtozok atfogd
modellezéséhez a kdvetkezd informacioforrasok alltak
rendelkezésre:

1. Az IOTA konzorcium altal kidolgozott terminologia
és adatgydjtési protokoll, amely a petefészekrak ult-
rahangos diagnosztikajahoz kapcsol6do, a klinikai
gyakorlatban hasznalt fogalmak elméleti és gyakorla-
ti meghatarozasat tartalmazza (egy targyterlileti rész-
ontolégia).

2. Elektronikusan elérhetd teljes publikaciok és kivo-
natok, amelyek kdzll a legfontosabb cikkek szama
ezres, a potencidlisan relevans cikkek szama mar tiz-
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ezres nagysagrendU. Tovabbi természetes nyelv(,
részben strukturalt informaciéforrasok az orvosi lexi-
konok, amelyek kozll felhasznaltuk az Online Medi-
cal Dictionary és CancerNet Dictionary szocikkeit,
és részleteket a Merck’s Manual-bdl. Kiemelt fontos-
sagu dokumentumok a mar emlitett IOTA adatgy(j-
tési protokoll.

3. Altalanos orvosi szétarak, taxondmiak, tezauruszok,
mint a Medical Subject Heading (MeSH).

4. Részleges statisztikak: altalanos demografiai adatok,
petefészekrakhoz kapcsolédé altalanos statisztikak
(példaul az USA NCI SEER adata), korabban publi-
kalt petefészekrak kutatasok statisztikai.

5. Szakért6i ismeretek az IOTA konzorcium résztvevéitdl.
Az el6z6 informacidforrasok igen sokrétl és sokféle

tipus a priori informaciot tartalmaznak explicit vagy im-

plicit médon a problémara, a valtozdkra, azok kvalitativ

és kvantitativ relacidira vonatkozéan. A munka soran a

kovetkez§ explicit a priori informaciékat hoztuk létre vagy

szarmaztattuk.

4.3. Szbtarak

Egy hétszaz szavas szétart, egy ehhez tartozé szi-
nonima listat és szakkifejezések listajat. Ezek részben
az IOTA konzorcium terminolégia meghatarozasabol és
az IOTA adatgydijtési protokollbdl, illetve szostatisztikak
szakért6i elemzése alapjan lettek kézileg dsszeallitva.
Automatikus eszkdzokkel, illetve a MeSH altalanos or-
vosi sz6tar felhasznalasaval tébb nagy méretd, egymil-
li6 sz6szam feletti szakszotart is eléallitottunk.

4.4. Dokumentum gyiijtemények

Elséként két orvosi szakért6 az elektronikusan elér-
het6 MEDLINE dokumentumgyjteménybdl kivalasztot-
ta az IOTA kontextusnak leginkabb megfelelé hivatko-
zasokat az egyes szakterlleti valtozékhoz. 42 illetve
22 kilénb6z6 szakcikk kerllt igy kivalasztasra, 3-5 cikk
valtozénként. E dokumentumoknak, mint a szakteriiletre
és feladatra leginkabb specifikusaknak az ugynevezett
relevancia faktorat a legmagasabb allitottuk be.

A szakértbk kivalasztottak az IOTA kontextushoz leg-
relevansabb szaklapokat (2 db), az igen relevans (3 db),
kdzepesen relevans (33 db) és a relevans Ujsagokat (93
db). Ezek alapjan létrehoztunk 6t egymasba agyazott
dokumentumgyjteményt a MEDLINE 1982 és 2003
kozti kivonatai alapjan, amelyek igy 45, 5.367, 71.845,
231.582 és 378.082 kivonatot tartalmaznak.

Létrehoztunk egy tovabbi dokumentumgyjteményt
az On-line Medical Dictionary és a CancerNet Dictio-
nary alapjan, amelyek egylttesen 67.829 szécikket tar-
talmaznak és a valtozdk leirdsai szintén tartalmaznak
hivatkozasokat az itteni szécikkekre.

Végiil még harom technikai jellegé dokumentumgy(ij-
teményt hoztunk létre az IOTA protokoll, egy petefé-
szekrak diagnosztikajarél sz6lé Ph.D tézis és a Merck
Manual alapjan. Ezek a gy(jtemények szakérték altal
kivalasztott szdcikkeket tartalmaznak az egyes valto-
z6khoz, illetve azok csoportjaihoz (részletesebb leira-
sok az [1] és [4]-ben).
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4.5. Valtozok kozotti relaciok

Az a priori informacioforrasokbdl a kévetkezd explicit
relaciokat, illetve relacidkra vonatkozo ismereteket szar-
maztattuk:

— valtozok csoportositasa (példaul alaktani valtozok,
eresedéssel kapcsolatos valtozok)

— valtozok értékeire vonatkoz6 sziikségszer( logikai
Osszefliggések,

— paronkénti, kdzvetlen statisztikai fliggéségek,
okozati, kvalitativ monotonitasi és hataserésségi
informacidval,

— tébbvaltozds okozati mechanizmusok,
kvalitativ hataser6sségi informacioéval

— részleges statisztikak, fliggéségek kvantitativ
jellemzése.

4.6. Adatok

A késdbbiekben bemutatott eredményekben egy-
részt az IOTA projekt altal gy(ijtott adatok egy el6zetes,
részleges adathalmazat hasznaltuk fel, amely 782 ese-
tet tartalmaz[4], masrészt a klinikai adatok mellett fel-
hasznaltuk a dokumentumgydjteményekbdl szarmazta-
tott binaris szakirodalmi adatokat, amelyekben egy be-
jegyzés a targyterilet valtozéinak explicit el6fordulasat
vagy egy kiszObértékhez kotdtt implicit relevanciajat
reprezentalja.

4.7. Integrélt adat- és szbvegelemzés Bayes-haldokkal

A felsorolt a priori tudaselemeket és az adatokat
egy ,annotalt” Bayes-halos tudasbazisban reprezental-
tuk, amit a kifejlesztett rendszer tarol (1. abra).

A rendszer az akadémiai és kereskedelmi Bayes-
halékhoz kapcsolédd szoftverekhez képest amellett,
hogy tartalmazza a megszokott tudasmérnoki, kdvet-
keztetési és tanulasi tamogatast, a kovetkez6 egyedi
tulajdonsagokkal bir:

» Targyteriletimodell-alapu és személyre szabott in-
formaciokeresés, amelyben egy kifejlesztett lekérdezé-
si nyelv segitségével az épitett vagy tanult annotalt
Bayes-halé alapjan a tudasmérndki kontextusnak meg-
feleld relevanciamérték definialhaté az illeszked6 szak-
cikkek megtalalasara [1].

« Statisztikai informacidkivonatolas, amely az egyes
szakcikkek relevans fogalmait tartalmaz6 adatbazis elem-
zésén alapul Bayes-halés modellekkel. Az alkalmazott
modellek lehetnek a fogalmak el6fordulasat leir6 valo-
szinlségi modellek, illetve a szakcikkek keletkezésének
és irasanak generativ (okozati) modelljei [4,5].

» Targyteriilet specifikus modelltanulas, mivel az an-
notalt Bayes-halds tudasbazist felhasznalva hattéris-
mereteket is tartalmazé koéltségfliggvény definialhatd a
kivalasztott modelire (L(G*,G), ami az posteriorral egy(tt
definialja a modellek varhaté jésagat).

» Egyszer(i és komplex Bayes-haldbeli strukturalis
jegyek a posteriori eloszlasanak kiszamitasat vagy Mon-
te Carlo becslése.

» Osztalyozé konstrualas tamogatasa a priori elosz-
lasok indukalasaval osztalyozés modellstruktirakra és
paraméterekre [3].
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2. abra Az integralt adat- és szévegelemzés Bayes-hadldkkal
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valészinliség szerint. A jobb oldalon a Markov-hatarbe-
liség posteriori valoszinliségének az alakuldsat mutat-
juk be a nagy Medline dokumentumgy(jteményt hasz-
nalva, ahol minden év esetén az el6z§ 6t év publikaci-
6t hasznaltuk fel adatként.

5. Kitekintés

Az eddigi fejezetek rovid attekintést adtak a monoliti-
kus Bayes-halok haszndlatarél. A monolitikus jelz6 ez
esetben arra utal, hogy egy adott problémara konstru-
alt haldban nincsen hierarchikus vagy moduléaris de-
komponalas. A kévetkezdkben révid attekintést adunk
a Bayes-halok kiterjesztésére térekvd iranyzatokrdl.

Az els6 lépést ebben az iranyban az annotalt Bayes-
halok vizsgalataval tettik meg, ami lehetéséget adott
tetsz8leges szemantikai informacié bevitelére és auto-
matizalt felhasznalarasa. A kévetkezd 1épés a mar em-
litett jegytanulas volt, mivel ennek felhasznalasaval fel-
fedezhet6k regularis halérészletek (bizonyos teriilete-
ken gyakori az ok-okozati mechanizmusokban felfedez-
hetd, ismétl6dé mintazat, példaul a biolégiaban egyes
gének aktivacios sémai).

A modularizaciés igényre adott formdlis valasz az
objektumorientalt Bayes-halok (OOBN) megjelenése volt
[22]. Mint neviik is mutatja, a programozastechnikaban
ismert objektumorientalt paradigmahoz hasonléan ter-
jesztik ki a Bayes-halokat. Egy objektumorientalt Bayes-
halézat objektumokbdl all, melyek szintén tovabb bont-
tozé-csomédpontokra. Ezzel a tébbszintl hierarchiaval
a teljes rendszer funkciondlisan kilénall6 részei elsziget-
elhet6ek egymastdl, valamint lehetévé valik elére felépi-
tett részhaloknak a teljesbe épitése. Hasonld koncep-
ci6 all a valészinliségi relaciéos modellek mogoétt is [21].

6. Osszegzés

A cikkben bemutatott Bayes-haldk Bayes-statisztikabe-
li alkalmazasa mogétt a kovetkez8 altalanos trendek
azonosithatdk be.

A szamitasi kapacitas névekedésével a Bayes-sta-
tisztika gyakorlatban is fontos, komplex modellek felett
is alkalmazhat6va valt, els6sorban a Monte Carlo méd-
szerek alkalmazasaval. Az elektronikusan elérhetd a pri-
ori ismeretek mennyiségének ndvekedése szintén a
Bayes-statisztikai megkdzelitést helyezte el6térbe, hi-
szen az adatok mennyiségének altalanos névekedése
gyakran még mindig nem elegendé a sziikséges modell
komplexitasahoz képest. A két trend eredményeképpen
a Bayes-statisztika egy normativ tudas és adat integra-
last tesz lehet6vé a szamitasi er6forrasok intenziv, de
az MCMC modszerek miatt egységes alkalmazasaval.

A Bayes-halok szintén ebbe a két trendbe illeszthe-
t6k, egyrészt mint szamitasigényes modellosztaly, mas-
részt mint az a priori ismereteket és megfigyeléseket
vagy kisérleti adatokat integralé modellosztaly. Tovabbi
elénye, hogy harom kapcsolédé szinten is értelmezhe-
t6 a modell, mint az egyUttes eloszlas hatékony fakto-
rizalasa, mint az egylttes eloszlas feltételes fliggetlen-
ségeinek explicit reprezentalasa és mint a targyterilet
okozati kapcsolatainak az abrazolasa.

A bemutatott orvosbioldgiai alkalmazas mellett ezek
mas terlileteken is megmutatkozd, altalanos trendek. A
jelenlegi kutatdsok a reprezentacié dekomponalasat,
hierarchizalasat és strukturalt informacidkkal térténd for-
malis kiegészitését célozzak.
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