
1. Bevezetés

A Bayes-háló alapú alkalmazások térhódítása a 90-es
években kezdôdött el [17], kezdetben fôleg orvosi di-
agnosztikai és elôrejelzô rendszereknél. Az elmúlt né-
hány évben a felhasználási kör olyan változatos terüle-
tekkel bôvült, mint pénzügyi, telekommunikációs vagy
hadszíntéri döntéstámogatás és hírszerzôi információk
integrálása. 

A felhasználói viselkedéshez kapcsolódó alkalmazá-
sok két fô irányvonal mentén fejlôdtek, egyrészt a sze-
mélyre szabott információszolgáltatás terén, mint pél-
dául a felhasználót segítô súgórendszerek [18], vala-
mint az információs rendszerek biztonsága területén
[32], ahol a rosszindulatú felhasználók kiszûrése a cél
a viselkedésmintázatok vizsgálta alapján. Ehhez ha-
sonló osztályozási feladat a spam levelek kiszûrése,
melyre számos Bayes-hálón alapuló megoldás szüle-
tett [28]. 

Komplex rendszerek mûködtetésénél, legyen az moz-
donyszerelés [25] vagy nyomtatórendszer karbantartás
[29], ahol a diagnosztika a bonyolult felépítés és bi-
zonytalanság miatt egyszerû szabályalapú módszerek-
kel nem követhetô, szintén hatékonyan alkalmazható a
bayesi megközelítés. Mindemellett különbözô döntés-
támogatási rendszerekben [30] és ezen belül, a kocká-
zat-elôrejelzés [26] terén is jelentôs pozíciót töltenek
be a Bayes-háló alapú alkalmazások. Egyes területe-
ken, mint a Bayes-háló alapú adatbányászatnál [23]
vagy az említett kockázat-elôrejelzésnél a Bayes-háló
tanulását maga a felhasználó irányíthatja. 

A következôkben áttekintjük a Bayes-háló modell-
osztályt, annak egy gyakori alkalmazási környezetét, a
Bayes-statisztikát és bemutatunk egy orvosbiológiai al-

kalmazást az integrált adat és szövegbányászat terüle-
tén. A 2. fejezet áttekintést ad a Bayes-statisztikáról,
majd ismertetjük a Bayes-háló reprezentációt és annak
kézi konstruálásához, tanulásához és az azzal történô
következtetéshez kapcsolódó fogalmakat, algoritmuso-
kat és metodológiákat. A 4. fejezet alkalmazási terüle-
teket mutat be, illetve ismerteti kutatásainkat, végül pe-
dig a Bayes-hálók továbbfejlesztési irányaira adunk ki-
tekintést.

2. Bayes-statisztikai módszerek

2.1. A valószínûség bayesi értelmezése
A cikkben vizsgált Bayes-statisztika és a Bayes-há-

ló modellosztály közös alapvetô célja, hogy a bizonyta-
lan háttértudáson és megfigyeléseken alapuló követ-
keztetések számára axiomatikus alapot és gyakorlati al-
kalmazáshatóságot biztosítson. A fellépô bizonytalan-
ságnak számos oka lehet, például a tudás kinyerése
során alkalmazott módszer, az adatgyûjtési eljárás, vagy
a tudás hiánya, esetleg figyelmen kívül hagyása.

A Bayes-statisztikai módszertan a bizonytalanság
kezelésére a valószínûségi keretrendszert alkalmazza,
a valószínûség szubjektivista interpretációját elfogad-
va, szemben a mérnöki gyakorlatban elterjedtebb, a re-
latív gyakoriságok határértékein alapuló, úgynevezett
frekventista értelmezéstôl. A szubjektivista értelmezés-
ben a valószínûségeket az események bekövetkezté-
ben való, adott kontextushoz tartozó a priori hiedelem-
nek, elvárásnak, egyfajta meggyôzôdési mértéknek te-
kintjük. 

Az axiomatikus származtatásnál megmutatható, hogy
egy döntési problémában minden eseményhez rendel-

40 LX. ÉVFOLYAM 2005/10

Statisztikai adat- és szövegelemzés 
Bayes-hálókkal: 

a valószínûségektôl a függetlenségi és oksági viszonyokig

MILLINGHOFFER ANDRÁS, HULLÁM GÁBOR, ANTAL PÉTER

Budapesti Mûszaki és Gazdaságtudományi Egyetem, Méréstechnika és Információs Rendszerek Tanszék
peter.antal@mit.bme.hu

Kulcsszavak:  Bayes-statisztika, Bayes-hálók, tanulás, alkalmazási területek

Egy sokváltozós, akár több száz bizonytalan eseményt is tartalmazó tárgyterület szakértôi háttértudáson, szakcikkeken és

statisztikai adatokon alapuló valószínûségi modellezése több szintre és fázisra tagolódó feladat. Egyrészt tartalmazza a

tárgyterület numerikus eloszlásának, a függetlenségi és az okozati relációknak, mint egymásra épülô szinteknek a modelle-

zését. Másrészt felöleli a priori ismeretek szakértôtôl, tudásbázisokból, a szemantikus webrôl és szabadszöveges források-

ból történô kinyerését és formalizálását, majd statisztikai adatokkal való kombinálását és egy döntéselméleti keretben való

használatát, azaz a tudásmérnökség, a gépi tanulás és következtetés területét is. A cikkünkben a Bayes-háló modellosztályt

(reprezentációt) mutatjuk be, amellyel ezek a feladatok sikerrel oldhatók meg. Ismertetjük a Bayes-statisztika keretrendszerét,

amely a Bayes-hálók alkalmazásának nem szükségszerû, de gyakori környezete. A módszer gyakorlati alkalmazását az álta-

lunk kifejlesztett rendszer egy orvosbiológiai feladatra, a petefészekrák tárgyterületre történô alkalmazásán keresztül illusz-

tráljuk, illetve áttekintjük a jelenleg létezô ipari alkalmazásokat. Végül kitérünk az ismertetett modell gyengeségeire és vá-

zoljuk az ezeket kiküszöbölni kívánó kutatási irányokat.



hetô egy pozitív valós szám, mely az adott esemény
valószínûségeként értelmezhetô és egy hasznossági
érték, melyekkel a preferenciák egzaktul reprezentál-
hatók és racionális döntések hozhatók. (Egy döntési
probléma egy (E, C, A, <) négyessel definiálható, ahol ‘E’
az események, ‘C’ a következmények, ‘A’ a lehetséges
cselekvések halmaza, ‘<’ pedig az ‘A’ elemei feletti prefe-
renciáinkat tükrözô rendezés [6].)

2.2. A bayesi modell
A bayesi módszertan további axiomatikus alapját a

reprezentációs tételek [6] jelentik, ezek megmutatják,
hogy egy végtelen felcserélhetôséget teljesítô eloszlás
(azaz amelyben bármely ‘π’ permutációra p(x1,...xn) =
p(xπ(1),...xπ(n))), reprezentálható egy alkalmas adatge-
nerálási parametrikus modellosztállyal és egy e feletti
eloszlással. 

A valószínûség szubjektivista értelmezésére és a
fenti tulajdonságú modellosztályok létére alapozva ja-
vasolható a Bayes-statisztikai keretrendszer, amelyben
a megfigyelési adatokat valószínûségi változók által
paraméterezett modellegyüttesekbôl származtatjuk, az-
az a megfigyelések és a modelparaméterek ugyanolyan
modellezési szinten helyezkednek el.

Gyakorlati megközelítésekben az alkalmazott modell-
osztály paraméterezését hierarchikusan tagolják, leg-
gyakrabban a következô módon, amit a cikkben is kö-
vetünk: egyrészt a modelltér diszkrét elemek (a lehetsé-
ges modellstruktúrák) halmaza, másrészt hozzájuk nu-
merikus paraméterek tartoznak.

2.3. Következtetés
A következtetés során a feladat, hogy megbecsüljük

egy adott esemény, vagy egy modell feltételes valószínû-
ségét az alapismereteink és a megfigyelési adatok sze-
rint. Az elsô esetben prediktív, a másodikban paramet-
rikus becslésrôl (a posteriori eloszlás számításáról) be-
szélünk. Mindkét esetben a Bayes-tételbôl indulunk ki,
amelynek segítségével események feltételes valószínû-
ségét számíthatjuk (a továbbiakban D az adatokat, G
egy struktúrát, θ pedig egy paraméterezést jelöl):

(1)

Az a posteriori eloszlást (röviden posteriort) az elô-
zôleg említett modelltér egy struktúrájának paramétere-
zésére, vagy magára a struktúrák terére is kiszámíthatjuk.
A paraméterek esetén a képlet formailag megegyezik
(1)-gyel, a struktúrákra vonatkozó pedig a paraméterek
kiintegrálása után adódik:

(2)

Predikció esetén még egy lépést teszünk: a keresett
valószínûséget kiszámítjuk minden létezô modellre, és
ezeknek a modellek a posteriori valószínûségével sú-
lyozott átlagát vesszük:

(3)

2.4. Monte Carlo módszerek
A fenti posteriorok gyakran nem mintavételezhetôk,

ezért Monte Carlo módszereket kell alkalmaznunk, pél-
dául a fontossági mintavételezést vagy a Markov-lánc
Monte Carlo (MCMC) módszerek egyikét [14]. A poste-
rior vizsgálata helyett a feladat gyakran egy vagy több

alakú várható érték becslésére egysze-
rûsödik. Ez megtehetô a következô lépésekkel, melyek
helyességét az MCMC módszereknél igazolt nagy szá-
mok törvénye (2. pont) és centrális határeloszlás tétel
(3. pont) biztosítja [14]:

A Monte Carlo mintavételezés mellett még gyakori a
meghatározott számú, legnagyobb a posteriori valószí-
nûségû modellstruktúra alapján történô kiszámítás, mely
legegyszerûbb esetben egyetlen, úgynevezett MAP (ma-
ximum a posteriori) modell használatát jelenti. A legna-
gyobb valószínûségû modell(ek) meghatározását a ta-
nulásról szóló fejezet tárgyalja.

2.5. Bayes-statisztikai megközelítés elônyei
A következô listában röviden összefoglaljuk a fentebb

ismertetett bayesi módszertannak a klasszikus statiszti-
kával szembeni elônyeit [27]:

• A paraméterek bizonytalanságát a felettük definiált
eloszlással jellemezzük, így minden statisztikai követ-
keztetés egy direkt valószínûségi állítás, ami az auto-
matizált többlépéses tanulási rendszereknél és tudás-
bázisok generálásánál igen elônyös.

• A paraméterbecslés egy inverziós feladatként fog-
ható fel, hisz itt kizárólag az adatból következtetünk ar-
ra a paraméterre, amely annak generálását meghatároz-
ta. A Bayes-tétel pontosan ezt az inverziót formalizálja,
így a következtetést a hipotetikus viselkedés figyelmen
kívül hagyásával végzi, szemben a klasszikus statiszti-
ka egyes módszereivel.

• Az a priori eloszlások (röviden priorok) használata
alkalmas az elôismeretek összegzésére vagy akár a tel-
jes ismerethiány kifejezésére is.

• A priorok – mivel leggyakrabban korábbi megfigye-
léseken vagy vizsgálatokon alapulnak – az ismeretszer-
zési folyamat egyes fázisainak tekinthetôk, hisz új tudá-
sunkat (az a posteriori eloszlást) ez alapján szerezzük.

• A bayesi következtetés a Bayes-tétel segítségével
egyenrangú módon, normatívan kombinálja az elôisme-
retekben és az adatokban rejlô információkat. Így a
Bayes-tétel használata az adatok és elôismeretek egy-
fajta súlyozását valósítja meg: az adatok mennyiségé-
nek növekedtével azok befolyása is nô a posteriori el-
oszlásra.

• Az a posteriori eloszlás használata pontbecslés he-
lyett a predikció során nem csak a legvalószínûbb kon-
figuráció alapján számol, hanem figyelembe veszi a ke-
vésbé valószínû eseteket is, ami a modell komplexitásá-
hoz képest kis mennyiségû megfigyelés esetén fontos.
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3. Bayes-hálók

A valószínûségi megközelítésben bizonytalan tudásun-
kat sztochasztikus változók együttes eloszlásával rep-
rezentáljuk. A szisztematikus struktúrával nem rendel-
kezô tárgyterületek esetén (szemben például a kép- és
hangfeldolgozással) az ilyen eloszlások modellezésére
használt elsôdleges eszközt ma a Bayes-hálók jelentik.
Ezekben egy irányított körmentes gráfban (DAG – di-
rected acylic graph) reprezentálják a változókat és a
köztük lévô összefüggéseket: minden csomópont egy-
egy változót jelöl, és minden csomóponthoz tartozik egy
lokális feltételes valószínûségi modell, amely leírja a vál-
tozó függését a szüleitôl (a pontos definíciót a követ-
kezô fejezet tartalmazza).

Mint reprezentációs eszköz, egy Bayes-háló háromfé-
le értelmezést kaphat, ezek a felsorolás sorrendjében egy-
re erôsebb modellezési, értelmezési lehetôséggel bírnak:

• Tekinthetô egyszerûen az együttes eloszlás egy ha-
tékony ábrázolásának, hisz a csomópontonkénti felté-
teles valószínûségi modellekre való faktorizálással a fel-
használt paraméterek száma jelentôsen csökken.

• Egy adott struktúra meghatározza, hogy az ábrá-
zolt eloszlásban milyen feltételes függések és független-
ségek lehetnek, azaz az élek tekinthetôk a közvetlen va-
lószínûségi összefüggések reprezentációjának, míg a
teljes gráf a reprezentált eloszlás függési térképének.

• Az elôzônél is erôsebb a kauzális értelmezés, mely-
ben minden élt az érintett két csomópont közötti ok-oko-
zati összefüggésként értelmezzük.

3.1. A valószínûségi definíció: szintaxis és szemantika
Egy Bayes-háló struktúrája és a reprezentálni kívánt

eloszlás közti kapcsolatot az alábbi négy feltételre ala-
pozhatjuk, melyekrôl belátható [9], hogy ekvivalensek. 

• A P(X1, ..Xn) eloszlás faktorizálható a G DAG szerint,
ha:

ahol Pa(Xi) az Xi csomópont szülôi halmaza.
• A P(X1, ..Xn) eloszlásra teljesül a sorrendi Markov-

feltétel G szerint, ha

ahol az I(X|Y|Z) reláció az X feltételes függetlensé-
gét jelenti a Z-tôl Y feltétellel, π pedig a struktúra
egy topologikus rendezése.

• A P(X1, ..Xn) eloszlásra teljesül a lokális (szülôi)
Markov-feltétel G szerint, ha bármely változó 
független nem-leszármazottaitól, feltéve szüleit.

• A P(X1, ..Xn) eloszlásra teljesül a globális Markov-
feltétel G szerint, ha

vagyis, ha z d-szeparálja1 x-et y-tól a G gráfban,
akkor x független y-tól, feltéve z-t.

Egy elfogadott definíció a Markov-feltételek által adott
függôségi rendszer tulajdonságaira épít [24]: A ‘G’ irá-
nyított körmentes gráf a ‘P(U)’ eloszlás Bayes-hálója (U
az összes változó halmaza), akkor és csak akkor, ha
minden u∈ U változót a gráf egy csomópontja repre-
zentál, a gráfra teljesül valamelyik (és így az öszszes)
Markov-feltétel, és a gráf minimális (azaz bármely él el-
hagyásával a Markov-feltétel már nem teljesülne).

Míg ez a definíció egyértelmûen a valószínûségi füg-
getlenségek rendszerének reprezentációjaként tekint a
Bayes-hálóra, addig a mérnöki gyakorlatban közkedvelt
az alábbi, praktikus meghatározás:

Az ‘U’ valószínûségiváltozó-halmaz Bayes-hálója a
(G, θ) páros,ha ‘G’ irányított körmentes gráf, amelyben
a csomópontok jelképezik U elemeit, θ pedig csomó-
pontokhoz tartozó ‘P(X|Pa(X))’ feltételes eloszlásokat le-
író numerikus paraméterek összessége.

Fontos megjegyezni, hogy a definiált modellosztály-
ban a lehetséges struktúrák száma a csomópontok szá-
mában szuperexponenciális, ez pedig például a késôbb
tárgyalandó tanulás komplexitását is befolyásolja.

Bár egy Bayes-háló egyaránt tartalmazhat diszkrét
és folytonos változókat is, mi a továbbiakban kizárólag
diszkrét, véges változókkal foglalkozunk, feltéve továb-
bá, hogy minden lokális feltételes valószínûségi modell
a multinomiális eloszlásokhoz tartozik, így a paraméte-
rek úgynevezett feltételes valószínûségi táblák (FVT-k)
elemei.

Egy adott Bayes-háló struktúrája meghatározza, hogy
az milyen függéseket írhat le (például külön komponen-
sekben lévô változók közt nem lehet függés), azonban
különbözô struktúrákhoz is tartozhat azonos implikált
függési rendszer. Ha két struktúrából ugyanazok a fel-
tételes függetlenségek olvashatók ki, a két gráfot meg-
figyelés-ekvivalensnek mondjuk. Belátható [24] hogy két
gráf akkor és csak akkor megfigyelés-ekvivalens, ha irá-
nyítás nélküli vázuk, illetve v-struktúráik (az A→B←C tí-
pusú részgráfok úgy, hogy A és C közt nincs él) mege-
gyeznek.

A megfigyelési ekvivalencia segítségével a struktú-
rákat diszjunkt osztályokba sorolhatjuk. Minden ilyen ek-
vivalencia osztályt egy úgynevezett esszenciális PDAG2

gráffal reprezentálhatunk. Az esszenciális gráf váza meg-
egyezik az osztályba tartozó gráfokéval, és csak azok az
élei irányítottak, amelyek iránya mindegyik gráfban meg-
egyezik (ún. kényszerített – compelled – élek).

3.2. Kauzális definíció
Az elôzô, tisztán valószínûségi definíciók bevezeté-

se után formálisan könnyen áttérhetünk a Bayes-hálók
kauzális értelmezésére: egy (G, θ) páros kauzális Bayes-
hálója a P(U) eloszlásnak, ha egyrészt a tárgyterület
valószínûségi modellje az elôzô értelmezések szerint,
továbbá minden él közvetlen ok-okozati viszonyt jel-
képez.
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1  ‘z’ d-szeparálja ‘x’-et és ‘y’-t a ‘G’ gráfban (x . y.z ⊆ V(G)), ha minden ‘x’ és ‘y’ között menô irányítatlan ‘p’ utat blokkol, azaz, ha (1) ‘p’
tartalmazza ‘z’ egy elemét nem összefutó élekkel, vagy (2) ‘p’ tartalmaz egy ‘n’ csomópontot összefutó élekkel, hogy ‘z’ nem tartalmazza 
sem ‘n’-t, sem valamelyik leszármazottját.

2  Egy PDAG (partially directed acyclic graph) gráf vegyesen tartalmaz irányított és irányítatlan éleket.



Hasonlóan, itt is létezik egy Markov-feltétel: egy P(U)
eloszlás és egy kauzális relációkat leíró G  gráf teljesí-
ti a kauzális Markov-feltételt, ha G és P(U) teljesíti a lo-
kális Markov-feltételt.

A Markov-feltétel teljesülése biztosítja, hogy minden
(kazuális) függés kiolvasható a gráfból, a másik irányhoz,
ahhoz tehát, hogy minden a gráfból kiolvasott függés
teljesüljön az eloszlásban, annak stabilnak kell lennie.
Egy P(U) eloszlás stabil, ha létezik olyan G gráf, hogy
P(U)-ban pontosan a G-bôl d-szeparációval kiolvasha-
tó függések és függetlenségek teljesülnek benne (pél-
dául megfelelô paraméterezés mellett elôfordulhat, hogy
egy A→B→C struktúrában A és C függetlenek). 

A fenti kauzális definíció a modell és a tárgyterület
összefüggéseinek értelmezését illetôen igen erôs, a
megfigyelési adatok statisztika elemzésének kereteit meg-
haladó eszközt szolgáltat. Alkalmazásakor figyelembe
kell vennünk, milyen nem kauzális kapcsolatok okozhat-
nak valószínûségi összefüggést két változó között, az-
az milyen korlátai vannak a kauzális értelmezésnek. 

Ilyenek lehetnek például:
• Zavaró változók: a két változó közti függést okozhat-

ja egy közös ôs (úgynevezett zavaró változó) is.
• Kiválasztási bias: a változók közti függés lehet az

adatgyûjtési mód következménye is (például ha egy
orvosi adatbázisba csak a komolyabb megfázással
kezelt betegek kerülnek be, akkor a láz és torokfá-
jás között direkt függést figyelhetünk meg).

• Az ôs-ok, leszármazott-okozat megfeleltetés és a
DAG gráfstruktúra kizárja a mechanizmusokban lé-
vô visszacsatolások (ciklikusságok), illetve az oda-
vissza ható okozatiság lehetôségét.

• A modelltér maga (azaz, hogy milyen változók sze-
repelnek, illetve azok milyen értékkészlettel rendel-
keznek) szintén befolyásolja, hogy milyen direkt füg-
gések jelennek meg (azaz a gráf struktúrát).

3.3. Bayes-hálók és a tudásmérnökség
A fentebb definiált Bayes-háló a tudásmérnökség

eszközeként jelent meg a 80-as években, konstruálá-
sa jellemzôen a szakértôktôl származó adatokból tör-
tént manuálisan. A kézi konstruálás még napjainkban
is jelentôs súlyt képvisel a Bayes-hálók alkalmazásá-
ban, másrészt ahol az adathoz viszonyítva jelentôs a
priori tudás áll rendelkezésre, ott a Bayes-hálók tudás-
mérnöki alkalmazása a bayesi keretrendszer alkalma-
zásának egy kezdeti fázisát jeleni, nevezetesen a prior
konstruálást.

A tudásmérnökség metodikájára nagy hatással volt
a nagy mennyiségû elektronikus tárgyterületi informá-
ció megjelenése, a megfelelô mennyiségû statisztikai
adat elérhetôsége, valamint a Bayes-statisztikai alapú
gépi tanulási módszerek elterjedése. 

A felépített tudásbázissal szemben követelmény-
ként jelent meg a bayesi módszerek alkalmazásakor,
hogy támogassa a priorok konstruálását, hiszen a va-
lószínûségekkel leírt a priori tudás és a rendelkezésre
álló adatok bayesi frissítéssel történô kombinációja szol-
gáltatja a végsô tudásmodellt. Mindemellett fontos, hogy

a tudásbázis segítse komplex, akár szabad szöveges
háttérismereteket is tartalmazó valószínûségi állítások
megfogalmazását, valamint tegye lehetôvé a szakértôk-
tôl származó szubjektív információ tárolását, mely rele-
váns a bayesi, a priori tudásmodell megalkotásánál.

Egy tudásbázis megépítéséhez olyan környezetben,
ahol rendelkezésre áll elektronikus tárgyterületi tudás,
elegendô statisztikai adat, valamint a megfelelô bayesi
módszerek, az alábbi lépések szükségesek (amelyekbôl
a specifikusokat részletezzük):
1) Célok, alkalmazási terület és modellezési szintek

identifikációja
Terminológia és ontológia elfogadása.

2) Nem rendszerezett tudás begyûjtése
Ehhez a lépéshez tartozik az összes releváns elek-
tronikus és egyéb szövegalapú információforrás fel-
dolgozása, ami magába foglalja az a priori informá-
ció kinyerését különféle szövegbányászati metódu-
sok alkalmazásával, mint például az általunk kifej-
lesztett módszer, amit a késôbbiekben mutatunk be.

3) Struktúra kinyerése
A G DAG struktúrák feletti p(G) priorok konstruálá-
sa, melyek egyesítik a szakértôk által megadott in-
formációkat az elektronikus forrásokból kinyert infor-
mációkkal. A p(G) a priori eloszlást többnyire norma-
lizálatlan formában lehet elôállítani: például egy a-
dott referencia struktúrától való eltérés alapján

ahol δ a referenciától való tetszôlegesen definiált
strukturális tulajdonságokbeli eltéréseknek a száma.

4) Paraméter és hiperparaméter kinyerése
A valószínûségi paraméterek számos módon nyerhe-
tôk: adatbázisok, szakirodalom vagy szakértôk szub-
jektív véleménye alapján. A p(θ|G) paraméter prior
specifikációja az általunk vizsgált diszkrét, véges e-
setben egy egyszerû módszerrel megtehetô, ha fel-
tehetjük az egyes változókhoz és szülôi értékkonfi-
gurációkhoz tartozó paraméterek függetlenségét:

Egy szinte kizárólagosan használt eloszláscsalád
az adott változó, adott szülôi értékkonfigurációjához
tartozó P(θi,i|G0,ξ) megadására a Dirichlet eloszlás
Dir(θi,i|α i i,i ξ), ahol az α i i,i hiperparaméter jelentése
a paraméterhez tartozó szülôi értékkonfiguráció ko-
rábban megfigyelt eseteinek számait jelenti [9]. 
Megmutatható, hogy a Dirichlet család az egyetlen
lehetséges választás, ha az ugyanazon megfigye-
lési ekvivalencia osztályba tartozó G struktúrákhoz
ekvivalens priorokat szeretnénk megadni, ami kauzális
modellezésnél nem szükségszerû [16].
További feltevések mellett az is bizonyítható, hogy
az összes struktúrához konzisztens p(θ|G) definíció-
ja ekvivalens egy teljes modellhez tartozó pontpara-
metrizációnak és egyetlen korábban megfigyelt össz-
esetszámot jelentô hiperparaméternek a megadá-
sával. E kettô együtt valójában egy a priori adathal-
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mazt definiál, ami korábban megfigyelt eseteket tar-
talmazza, így az összesetszámot virtuális vagy a pri-
ori mintaszámnak nevezünk.

5) Érzékenységi analízis, verifikáció és validáció
A modellek posteriorjának vizsgálata magába foglal-
ja egyrészt az a priori eloszlásokra való érzékeny-
ség vizsgálatát (ami különösen fontos a több szak-
értôt és tudásbázist is magában foglaló automati-
záltan származtatott prioroknál), másrészt referen-
cia priorokkal való összehasonlítást. Mindkét eset-
ben gyakran szükséges a modellosztály komplexi-
tása miatt, egyrészt hogy modell jegyeket használ-
junk, másrészt hogy MAP modellre alapozzuk a vizs-
gálatot. 
Mint ahogy az látható, a tudásbázis építése a bayesi

modellkiértékeléssel zárul. A kiértékelés tartalmazza az
adat és a modell kompatibilitásának vizsgálatát és az a
posteriori valószínûségek vizsgálatát, azaz a tudás-
mérnöki folyamat lényege az a priori modell konstruálá-
sa a késôbbi tanulási folyamat számára. 

3.4. Következtetés Bayes-hálókban
Egy konkrét Bayes-hálóban való következtetés alap-

feladata a P(X = x|Y = y,G,θ) mennyiség kiszámítása,
azaz adott egy struktúra és paraméterezése valamint
ismert a bizonyítékváltozók (Y) behelyettesítése, kérdés
a lekérdezésváltozók (X) egy adott konfigurációjának
valószínûsége.

Könnyen belátható [15], hogy a feladat NP-teljes (hi-
szen például visszavezethetô a kielégíthetôségi prob-
lémára), számításigénye a csomópontok számában ex-
ponenciális. Ezért a gyakorlatban vagy szimuláción ala-
puló, közelítô eredményt adó Monte Carlo módszereket
[14], vagy a gráfot másodlagos struktúrákba transzfor-
máló úgynevezett junction-tree algoritmusokat [19] al-
kalmaznak.

Hogy P(X = x|Y = y) a mennyiséget kiszámíthassuk,
azaz valódi bayesi predikciót végezzünk, a (3) képlet
szerinti összegzést és integrálást kell elvégezni. Ilyen-
kor az 2.4. fejezet közelítései alkalmazhatók.

3.5. Bayes-hálók tanulása
Mivel a teljes bayesi következtetés annak komplexi-

tása miatt csak különleges esetekben hajtható végre,
gyakran a teljes modelltér helyett csak egyetlen modellt
használunk. Ha elegendô statisztikai adat áll rendelke-
zésre, a fent bemutatott manuális konstruálás mellett
szerepet kaphat az optimális modell keresése, a tanu-
lás, mely végezhetô a szakértôi modellbôl kiindulva, an-
nak finomításával, vagy tabula rasa alapon is. A tanu-
lás, mint az optimális modell keresése, a parametrikus
következtetés alkalmazásának tekinthetô és megmu-
tatható, hogy NP-teljes bonyolultságú [10], az adatok
szükséges mennyiségére kívánt közelítési hiba mellett
[15] ad képletet.

A tanulás két szinten lehetséges: kereshetjük adott
struktúra mellett az optimális paraméterezést (paramé-
tertanulás), vagy a legjobb struktúrát és annak paramé-
terezését (struktúratanulás). Az optimalitás valamilyen

mérték szerint értendô, ez legegyszerûbb esetben a
modell a posteriori valószínûsége.

A MAP modell keresése mellett elképzelhetô más kri-
tériumfüggvény is, amely leggyakrabban az a posterio-
ri valószínûség egyenletes priorral, kiegészítve valami-
lyen, a struktúra bonyolultságát büntetô taggal. Az ilyen
büntetés alkalmazása felfogható a prior módosításá-
nak: minél erôsebb a büntetés, annál kisebb a bonyo-
lult struktúrák valószínûsége. A leggyakoribb ilyen minô-
sítési függvény a bayesi információ-kritérium függvény
(BIC – Bayesian information criterion), a képlete [11]:

(4)

ahol ‘N’ a tanító minták, |θ| pedig a háló paraméte-
reinek száma. A logN-nel arányos mellett még elképzel-
hetô N-ben lineáris vagy polinomiális büntetés is.

Számításigényét tekintve a tiszta a posteriori krité-
riumfüggvény, és a teljes, független, azonos eloszlású
minták alapján végzett tanulás a legegyszerûbb. Ekkor,
Dirichlet eloszlású paraméterpriort feltéve, adott struk-
túra a posteriori valószínûsége egyszerû, zárt formában
számítható [8]:

(5)

ahol az Ni jk az i. változó j. szülôi konfigurációjának
és k. értékének az elôfordulását, qi az i. változó szülôi
konfigurációinak a számát és ri az értékeinek számát
jelenti (Ni j a megfelelô marginális). Az N’i j k a megfelelô
virtuális mintaszámokat jelöli (ezek elôismeretek hiányá-
ban 1-nek választhatók). 

Paramétertanulás esetén az optimális paramétere-
zés az FVT-k külön-külön, relatív gyakoriságokkal való
kitöltésével elérhetô, struktúratanulás esetén pedig min-
den csomóponthoz külön megkereshetô az optimális
szülôi halmaz, feltéve hogy ismert a csomópontok egy
kauzális rendezése. (Egy kauzális rendezésben a csomó-
pontok szülei csak az ôket megelôzô változók közül kerül-
hetnek ki. A kauzális rendezés a reprezentáns DAG csú-
csainak egy topologikus rendezése.) Ha ilyen információ
nem áll rendelkezésre, ügyelni kell, hogy a DAG tulaj-
donság ne sérüljön, például úgy, hogy minden lehetsé-
ges sorrendet külön megvizsgálunk.

3.6. Bayes-hálók tanulása hiányos adatok alapján
Amennyiben a tanító adatok hiányosak, azaz bizo-

nyos változók értéke nem minden esetben ismert a tanu-
lás feladata jóval nehezebbé válik. Ilyenkor a paramé-
tertanulásban iteratív eljárások használhatók, a legis-
mertebbek ezek közül a gradiens alapú közelítô eljárá-
sok vagy ezek robosztusabb változatai, a konjugált gra-
diens és a skálázott konjugált gradiens algoritmusok
[7], vagy az expectation maximization algoritmus [13].

Struktúratanulás esetén, mivel a szülôi halmazok
nem tanulhatók külön még adott sorrendnél sem, a tel-
jes struktúrateret bejáró keresésre van szükség. Mivel
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a lehetséges struktúrák száma a csomópontok számá-
val szuperexponenciálisan nô, a gyakorlatban nem tel-
jes keresési eljárásokat kell alkalmazni, például mohó
keresést vagy szimulált lehûtést (ekkor az elemi lépés
pl. egy él törlése, beszúrása, vagy megfordítása lehet).

Ezek az eljárások is azonban csak akkor mûködnek,
ha az adatokra teljesül a véletlenszerû eltûnés (MAR –
missing at random) feltétele, azaz ha a bejegyzések el-
tûnése nem függ az eltûnt értéktôl [13].

3.7. Jegytanulás
A jegytanulás során bizonyos részstruktúrák (jegyek)

meglétének valószínûségét keressük. Ilyen jegy lehet
a legegyszerûbb esetben például egy adott él meglé-
te, vagy Markov-határ keresése. Egy X csomóponthal-
maz Markov-takarója egy olyan Y halmaz, melyre igaz,
hogy ‘I(X|Y|U\(XuY))’ (azaz Y d-szeparálja X-et a háló
többi részétôl). Egy csomópont vagy csomóponthalmaz
Markov-határa annak minimális Markov-takarója. Ez le-
hetôvé teszi egy szimmetrikus, páronkénti reláció defi-
niálását a Markov-határbeliséget, az egymás Markov-
határában való elôfordulást (MBM(X,Y) – Markov boun-
dary membership). A jegytanulás alternatív megoldást
jelenthet a struktúratanulással szemben, mivel ha segít-
ségével meg tudjuk állapítani a fent említett viszonyok
meglétének valószínûségét (azaz, hogy egy csomó-
pont beletartozik-e egy másik Markov-határába), akkor
ezzel a MAP modell egy jó közelítését konstruálhatjuk.

A kérdéses valószínûségek számítása, a bayesi kö-
vetkeztetés sémáját követi, amibôl következôen össze-
geznünk kell azon struktúrák a posteriori valószínûsé-
gét, amelyek rendelkeznek a kívánt jeggyel:

(6)

Természetesen itt is alkalmazhatók közelítô Monte
Carlo módszerek, mivel a struktúrák feletti összegzés
túl számításigényes, hacsak nincsenek rendkívül pon-
tos a priori ismereteink a lehetséges struktúrákról.

4. Egy alkalmazási terület: 
petefészekrák-diagnosztika

A petefészekrák biológiájának és preoperatív diag-
nosztikájának kutatása inspirációként szolgált az integ-
rált szöveg és adatelemzés általános problémáinak a
vizsgálatában és elvezetett egy Bayes-hálókat alkal-
mazó rendszer kifejlesztéséhez. 

A leuveni egyetem (KUL) villamosmérnöki karának
(ESAT) egy csoportjában (SCD/SISTA) az egyik szerzô
részvételével (A.P.) 1998-tól folynak a kutatások a pe-
tefészekrák preoperatív diagnózisával és általános bio-
lógiai modellezésével kapcsolatban, együttmûködve az
egyetem kórházával (Univ. Hospital Gasthuisberg). A
kezdeti kutatások célja 1998 és 2000 között a petefé-
szek daganatok preoperatív diagnosztikájában hasz-
nálható matematikai, statisztikai modellek kifejlesztése
volt, a klinikán meglévô szakértôi tudás és az ott gyûj-
tött adatok alapján. A második fázisban 2000 és 2002

között egy nemzetközi konzorcium alakult, amely a vi-
lág vezetô petefészekrák kutatóit és diagnosztáit tömö-
ríti, az International Ovarian Tumor Analysis (IOTA) kon-
zorcium [31]. Ennek célja nagy mennyiségû, azonos
protokoll szerint beszerzett és jelenlegi tudásunk alap-
ján igen részletes betegleírás összegyûjtése, illetve a
létrejött adatbázis alapján a tárgyterület átfogó statisz-
tikai elemzése. A harmadik fázisban 2002-tôl folytatódik
az IOTA konzorcium adatainak gyûjtése és elemzése,
illetve a leuveni egyetem génchip laborjának közremû-
ködésével 2003-tól megindult a daganatok genetikai
profiljának elemzése is. Jelenleg a második fázis ada-
tainak elemzése folyik, azonban a kifejlesztett módsze-
rek, különösen, amelyek az integrált szöveg és adat-
elemzést támogató Bayes-hálókon alapulnak, már a har-
madik fázis számára készültek, a génaktivitás mintáza-
tok és a klinikai adatok együttes elemzésére. 

4.1. A probléma leírása
A petefészekrák korai diagnosztikája kiemelkedô fon-

tosságú, mivel jelenleg a páciensek kétharmadát már
csak elôrehaladott állapotban sikerül diagnosztizálni,
ami a kezelések esélyeit nagyban lerontja. A petefé-
szekrákhoz kapcsolódó a priori információk nagy meny-
nyisége és sokszintûsége jól illusztrálja a „integrált adat
és tudás” elemzés kihívásait általános problémákban
is. 

A rosszindulatú daganat kialakulásának magyará-
zatára több elmélet is létezik, amelyek az ovulációk szá-
mához, a gonadotropinok szintjéhez, a karcinogén anya-
gokhoz, illetve az örökletes vagy szerzett genetikai ren-
dellenességekhez kapcsolódnak. A kockázatot befo-
lyásoló ismert faktorok például a szülések száma, ter-
méketlenség, a teherbe esést segítô hormonális keze-
lések, a szoptatási idôszak hossza, hormonális fogam-
zásgátlók, karcinogének, mell- és petefészekrák csalá-
di elôfordulása, életkor, méheltávolítás. További elérhe-
tô orvosi mérések és megfigyelések például a daganat
alaktani és eresedési leírói, vagy a tumormarkerek szint-
jei (például CA 125). A faktorok egy részének a hatását
kvantitatívan is ismerjük (bizonyos genetikai rendelle-
nességek esetén a kockázat megnövekedését), más
faktoroknak azonban már a megállapítása, mérése is
erôsen szubjektív [31].

4.2. A priori információk
A petefészekrák preoperatív diagnosztikájához kap-

csolódó, klinikai gyakorlatban használt változók átfogó
modellezéséhez a következô információforrások álltak
rendelkezésre:
1. Az IOTA konzorcium által kidolgozott terminológia

és adatgyûjtési protokoll, amely a petefészekrák ult-
rahangos diagnosztikájához kapcsolódó, a klinikai
gyakorlatban használt fogalmak elméleti és gyakorla-
ti meghatározását tartalmazza (egy tárgyterületi rész-
ontológia).

2. Elektronikusan elérhetô teljes publikációk és kivo-
natok, amelyek közül a legfontosabb cikkek száma
ezres, a potenciálisan releváns cikkek száma már tíz-
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ezres nagyságrendû. További természetes nyelvû,
részben strukturált információforrások az orvosi lexi-
konok, amelyek közül felhasználtuk az Online Medi-
cal Dictionary és CancerNet Dictionary szócikkeit,
és részleteket a Merck’s Manual-ból. Kiemelt fontos-
ságú dokumentumok a már említett IOTA adatgyûj-
tési protokoll.

3. Általános orvosi szótárak, taxonómiák, tezauruszok,
mint a Medical Subject Heading (MeSH).

4. Részleges statisztikák: általános demográfiai adatok,
petefészekrákhoz kapcsolódó általános statisztikák
(például az USA NCI SEER adata), korábban publi-
kált petefészekrák kutatások statisztikái.

5. Szakértôi ismeretek az IOTA konzorcium résztvevôitôl.
Az elôzô információforrások igen sokrétû és sokféle

típusú a priori információt tartalmaznak explicit vagy im-
plicit módon a problémára, a változókra, azok kvalitativ
és kvantitatív relációira vonatkozóan. A munka során a
következô explicit a priori információkat hoztuk létre vagy
származtattuk.

4.3. Szótárak
Egy hétszáz szavas szótárt, egy ehhez tartozó szi-

nonima listát és szakkifejezések listáját. Ezek részben
az IOTA konzorcium terminológia meghatározásából és
az IOTA adatgyûjtési protokollból, illetve szóstatisztikák
szakértôi elemzése alapján lettek kézileg összeállítva.
Automatikus eszközökkel, illetve a MeSH általános or-
vosi szótár felhasználásával több nagy méretû, egymil-
lió szószám feletti szakszótárt is elôállítottunk.

4.4. Dokumentum gyûjtemények
Elsôként két orvosi szakértô az elektronikusan elér-

hetô MEDLINE dokumentumgyûjteménybôl kiválasztot-
ta az IOTA kontextusnak leginkább megfelelô hivatko-
zásokat az egyes szakterületi változókhoz. 42 illetve
22 különbözô szakcikk került így kiválasztásra, 3-5 cikk
változónként. E dokumentumoknak, mint a szakterületre
és feladatra leginkább specifikusaknak az úgynevezett
relevancia faktorát a legmagasabb állítottuk be. 

A szakértôk kiválasztották az IOTA kontextushoz leg-
relevánsabb szaklapokat (2 db), az igen releváns (3 db),
közepesen releváns (33 db) és a releváns újságokat (93
db). Ezek alapján létrehoztunk öt egymásba ágyazott
dokumentumgyûjteményt a MEDLINE 1982 és 2003
közti kivonatai alapján, amelyek így 45, 5.367, 71.845,
231.582 és 378.082 kivonatot tartalmaznak.

Létrehoztunk egy további dokumentumgyûjteményt
az On-line Medical Dictionary és a CancerNet Dictio-
nary alapján, amelyek együttesen 67.829 szócikket tar-
talmaznak és a változók leírásai szintén tartalmaznak
hivatkozásokat az itteni szócikkekre. 

Végül még három technikai jellegô dokumentumgyûj-
teményt hoztunk létre az IOTA protokoll, egy petefé-
szekrák diagnosztikájáról szóló Ph.D tézis és a Merck
Manual alapján. Ezek a gyûjtemények szakértôk által
kiválasztott szócikkeket tartalmaznak az egyes válto-
zókhoz, illetve azok csoportjaihoz (részletesebb leírá-
sok az [1] és [4]-ben). 

4.5. Változók közötti relációk
Az a priori információforrásokból a következô explicit

relációkat, illetve relációkra vonatkozó ismereteket szár-
maztattuk: 

– változók csoportosítása (például alaktani változók,
eresedéssel kapcsolatos változók)

– változók értékeire vonatkozó szükségszerû logikai
összefüggések, 

– páronkénti, közvetlen statisztikai függôségek,
okozati, kvalitatív monotonitási és hatáserôsségi
információval,

– többváltozós okozati mechanizmusok, 
kvalitatív hatáserôsségi információval

– részleges statisztikák, függôségek kvantitatív 
jellemzése.

4.6. Adatok
A késôbbiekben bemutatott eredményekben egy-

részt az IOTA projekt által gyûjtött adatok egy elôzetes,
részleges adathalmazát használtuk fel, amely 782 ese-
tet tartalmaz[4], másrészt a klinikai adatok mellett fel-
használtuk a dokumentumgyûjteményekbôl származta-
tott bináris szakirodalmi adatokat, amelyekben egy be-
jegyzés a tárgyterület változóinak explicit elôfordulását
vagy egy küszöbértékhez kötött implicit relevanciáját
reprezentálja.

4.7. Integrált adat- és szövegelemzés Bayes-hálókkal
A felsorolt a priori tudáselemeket és az adatokat

egy „annotált” Bayes-hálós tudásbázisban reprezentál-
tuk, amit a kifejlesztett rendszer tárol (1. ábra).

A rendszer az akadémiai és kereskedelmi Bayes-
hálókhoz kapcsolódó szoftverekhez képest amellett,
hogy tartalmazza a megszokott tudásmérnöki, követ-
keztetési és tanulási támogatást, a következô egyedi
tulajdonságokkal bír:

• Tárgyterületimodell-alapú és személyre szabott in-
formációkeresés, amelyben egy kifejlesztett lekérdezé-
si nyelv segítségével az épített vagy tanult annotált
Bayes-háló alapján a tudásmérnöki kontextusnak meg-
felelô relevanciamérték definiálható az illeszkedô szak-
cikkek megtalálására [1]. 

• Statisztikai információkivonatolás, amely az egyes
szakcikkek releváns fogalmait tartalmazó adatbázis elem-
zésén alapul Bayes-hálós modellekkel. Az alkalmazott
modellek lehetnek a fogalmak elôfordulását leíró való-
színûségi modellek, illetve a szakcikkek keletkezésének
és írásának generatív (okozati) modelljei [4,5].

• Tárgyterület specifikus modelltanulás, mivel az an-
notált Bayes-hálós tudásbázist felhasználva háttéris-
mereteket is tartalmazó költségfüggvény definiálható a
kiválasztott modellre (L(G^,G), ami az posteriorral együtt
definiálja a modellek várható jóságát). 

• Egyszerû és komplex Bayes-hálóbeli struktúrális
jegyek a posteriori eloszlásának kiszámítását vagy Mon-
te Carlo becslése. 

• Osztályozó konstruálás támogatása a priori elosz-
lások indukálásával osztályozós modellstruktúrákra és
paraméterekre [3]. 

HÍRADÁSTECHNIKA

46 LX. ÉVFOLYAM 2005/10



Ezek a kutatások fôként az IOTA projekthez kap-
csolódva fejlôdtek. Rájuk épülve vagy részben kapcso-
lódva új kutatási irányok a Bayes-hálóbeli struktúrális
jegyek elsôrendû valószínûségi logikán belüli kezelése
és lokális kauzális algoritmusok vizsgálata a teljes bayesi
megközelítés mellett [20]. A szakirodalmi „adat” elemzé-
se mindegyik esetben központi helyet foglal el, akár mint
teszt terület vagy cél. Az integrált adat- és szövegelem-
zést a 2. ábra mutatja be.

A szakirodalom statisztikai elemzésére, a Bayes-há-
lók Bayes-statistisztikai keretrendszerben történô fel-
használására két eredményt mutatunk be, amelyek az
(5)-(6) egyenlet szerinti posteriorokat mutatják sorrendi
alapú Monte Carlo Markov Chain módszerekkel megbe-
csülve [12]. A 3. ábra (köv.old.) baloldalán az irányítat-
lan élek azokat a páronkénti Markov-határbeliséget mu-
tatják, amelyek a posteriori valószínûsége egy adott
küszöbérték feletti, illetve a szakértôtôl származó priori
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1. ábra
A priori ismeretek és adatok 
a petefészekrák tárgyterületén
Bayes-háló tanulásához

2. ábra  Az integrált adat- és szövegelemzés Bayes-hálókkal



valószínûség szerint. A jobb oldalon a Markov-határbe-
liség posteriori valószínûségének az alakulását mutat-
juk be a nagy Medline dokumentumgyûjteményt hasz-
nálva, ahol minden év esetén az elôzô öt év publikáci-
ót használtuk fel adatként.

5. Kitekintés

Az eddigi fejezetek rövid áttekintést adtak a monoliti-
kus Bayes-hálók használatáról. A monolitikus jelzô ez
esetben arra utal, hogy egy adott problémára konstru-
ált hálóban nincsen hierarchikus vagy moduláris de-
komponálás. A következôkben rövid áttekintést adunk
a Bayes-hálók kiterjesztésére törekvô irányzatokról.

Az elsô lépést ebben az irányban az annotált Bayes-
hálók vizsgálatával tettük meg, ami lehetôséget adott
tetszôleges szemantikai információ bevitelére és auto-
matizált felhasználárása. A következô lépés a már em-
lített jegytanulás volt, mivel ennek felhasználásával fel-
fedezhetôk reguláris hálórészletek (bizonyos területe-
ken gyakori az ok-okozati mechanizmusokban felfedez-
hetô, ismétlôdô mintázat, például a biológiában egyes
gének aktivációs sémái). 

A modularizációs igényre adott formális válasz az
objektumorientált Bayes-hálók (OOBN) megjelenése volt
[22]. Mint nevük is mutatja, a programozástechnikában
ismert objektumorientált paradigmához hasonlóan ter-
jesztik ki a Bayes-hálókat. Egy objektumorientált Bayes-
hálózat objektumokból áll, melyek szintén tovább bont-
hatók objektumokra, vagy egyszerû valószínûségivál-
tozó-csomópontokra. Ezzel a többszintû hierarchiával
a teljes rendszer funkcionálisan különálló részei elsziget-
elhetôek egymástól, valamint lehetôvé válik elôre felépí-
tett részhálóknak a teljesbe építése. Hasonló koncep-
ció áll a valószínûségi relációs modellek mögött is [21].

6. Összegzés

A cikkben bemutatott Bayes-hálók Bayes-statisztikabe-
li alkalmazása mögött a következô általános trendek
azonosíthatók be. 

A számítási kapacitás növekedésével a Bayes-sta-
tisztika gyakorlatban is fontos, komplex modellek felett
is alkalmazhatóvá vált, elsôsorban a Monte Carlo mód-
szerek alkalmazásával. Az elektronikusan elérhetô a pri-
ori ismeretek mennyiségének növekedése szintén a
Bayes-statisztikai megközelítést helyezte elôtérbe, hi-
szen az adatok mennyiségének általános növekedése
gyakran még mindig nem elegendô a szükséges modell
komplexitásához képest. A két trend eredményeképpen
a Bayes-statisztika egy normatív tudás és adat integrá-
lást tesz lehetôvé a számítási erôforrások intenzív, de
az MCMC módszerek miatt egységes alkalmazásával.

A Bayes-hálók szintén ebbe a két trendbe illeszthe-
tôk, egyrészt mint számításigényes modellosztály, más-
részt mint az a priori ismereteket és megfigyeléseket
vagy kísérleti adatokat integráló modellosztály. További
elônye, hogy három kapcsolódó szinten is értelmezhe-
tô a modell, mint az együttes eloszlás hatékony fakto-
rizálása, mint az együttes eloszlás feltételes független-
ségeinek explicit reprezentálása és mint a tárgyterület
okozati kapcsolatainak az ábrázolása.

A bemutatott orvosbiológiai alkalmazás mellett ezek
más területeken is megmutatkozó, általános trendek. A
jelenlegi kutatások a reprezentáció dekomponálását,
hierarchizálását és strukturált információkkal történô for-
mális kiegészítését célozzák.
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