Automatikus tesztgeneralas
formalis protokollspecifikacio alapjan
VINCcZE GABOR

Budapesti Miszaki és Gazdasagtudomanyi Egyetem, Tavkézlési és Médiainformatikai Tanszék

vincze@alpha.ttt.bme.hu
Reviewed

Kulcsszavak: konformancia tesztelés, tesztgeneralas, mutacio-analizis, evolicios algoritmusok, bakterialis algoritmus

A cikkben egy eljarast mutatunk be automatikus tesztgenerdldsra a protokoll formdlis SDL specifikacidja alapjan. A protokoll-
tesztelés a fejlesztési folyamat fontos része, am a tesztkészletek kialakitasa idbigényes feladat. Ennek a fazisnak az auto-
matizalasa csékkenti a bevezetési id6t, és egy komoly hibaforrdst sziintet meg. Megmutatjuk, hogyan hasznalhaté a mutéacio-
analizis egy allapottér-bejard algoritmusbdl eredd tesztesetek, és a tesztkritériumok megfeleltetésének. Ezek utan evolucios
algoritmusokat alkalmazunk egy optimalis részhalmaz kivalasztasara ebbél a kezdeti tesztkészlet-halmazbdl. Ezeket az elja-
rasokat felhaszndlva egy teljes tesztgeneracios folyamatot épitiink fel, amellyel egy protokoll formalis specifikdcéjabdl teszt-

készleteket kapunk.
1. Bevezetés

Ahogy a tavkozlési cégeknek egyre tébb szolgaltatast
kellett nydjtaniuk, mikézben halézataik integraldsara
térekedtek, ugy nétt a tavkodzlési protokollok komplexi-
tasa. Ezzel egyidejlileg ezeknek a halézatoknak egyre
névekvé megbizhatésagi kdvetelményeknek kellett
megfelelniiik. Ezzel a komplexitas-névekedéssel a pro-
teherré valt, és a megbizhatésag, valamint a gyartdk
termékeinek egyuttm(ikdédése iranti igény atfogobb
tesztelést tett sziikségessé. Ezek a problémak hivtak
életre a formalis specifikacios eljarasokat, valamint a
formalis tesztelési eljarasokat, amelyekkel ellen6rizni le-
het, hogy egy alkalmazas a specifikacionak megfeleld-
en mikodik-e.

A tavkozlési vilagban legelterjedtebben hasznalt
formalis nyelvek a Specifikacios és Leird Nyelv (Speci-
fication and Description Language, SDL[1]) a rendsze-
rek specifikalasara, amely a rendszert parhuzamosan
m(ik6dé kommunikalé véges automatakkal modellezi,
és a Fa és Tablas Kombinalt Jel6lésmod (Tree and Ta-
bular Combined Notation, TTCN [2]) a rendszerek feke-
te doboz jellegl ellenérzésére.

Ma mar a rendelkezésre allnak nagymértékben int-
egralt és széles korben elterjedt fejlesztéeszkozok [3],
hogy segitsék a fejlesztéket a specifikaciés és a vizs-
galati folyamat soran. Ennek ellenére a formalis teszt-
készletek el6allitasa még mindig jelent6s munkat igé-
nyel, és az emberi tényezd tovabbra is a legdragabb,
és legtdbb hiba forrasa. Mivel a tesztkészleteket sok-
szor tébb szazszor vagy ezerszer kell lefuttatni, a futa-
si id6 és a hardverkdvetelmények szintén kulcsfontos-
saguak.

Ebben a cikkben bemutatunk egy moédszert az au-
tomatikus tesztgeneralasra a rendszer SDL leirasabdl.
Ennek a tesztgeneraciés folyamatnak négy f6 lépése
van:

LIX. EVFOLYAM 2004/8

1) formalis specifikalas SDL nyelven
2) teszteset-halmaz el8allitasa egy allapottér-bejard
algoritmussal

3) mutacio-analizis

4) egy optimalis teszteset-részhalmaz kivalasztasa

El6sz6r bemutatjuk a mutacio-analizis eljarast; ezek
utan megmutatjuk, hogyan alkalmazunk evollciés al-
goritmusokat egy optimalis teszteset-részhalmaz kiva-
lasztasara, majd végil bemutatjuk a teljes tesztgener-
acios folyamatot az INRES protokoll példajan.

2. Mutacio-analizis

2.1. Attekintés

A mutacié-analizis egy fehér doboz modszer teszte-
setek kialakitasara, azaz a rendszer bels6 logikajanak
ismeretén alapul. A hagyomanyos mutacié-analizist a
programkddokban talalhaté hibak felderitésére dolgoz-
tak ki, am a mi esetlinkben programok helyett specifi-
kaciokra alkalmazzuk, a megfelel6 fekete doboz teszte-
setek kivalasztasahoz.

Egy mutacio-analizis rendszerben definialni kell egy
mutacios operator készletet [4], ahol minden operator
egy atomi szintaktikai valtozast testesit meg. Ezeknek
az operatoroknak az alkalmazasa két okbol praktikus.
Egyrészt lehetéve teszik a hibatipusok formalis leira-
sat, masrészt lehetdvé teszik a mutansok automatikus
generalasat. Az operatorokat szisztematikusan alkal-
mazva a specifikaciéra egy mutanskészletet general-
hatunk.

Egy mutacié-analizis rendszer 3 komponensbdl all:

— az eredeti rendszer,

— a mutans rendszer — az eredeti rendszerhez képest
egy apro szintaktikai valtozast tartalmaz. A mutan-
sokat a mutacids operatorok alkalmazasaval kapjuk,
ahol minden operator egy apro szintaktikai valtozast
testesit meg,

27

HiRADASTECHNIKA

— orakulum — egy ember, vagy a legtébb esetben egy
gép, amely megkillénbdzteti az eredeti rendszert a
mutanstdl a kérnyezettel vald interakcioi alapjan.

bemenet —>| Eredeti specifikacié

kimenet _> ekvivalens
vagy
Y kiilénbdz6

—)l Mutans specifikacié

1. dbra Mutacié-analizis

Abbdl a feltételezésbdl indulunk ki, hogy a véges
automatat megalkot6 olyan specifikaciét készit, amely
kdzel all az elvarasokhoz, és ezért azok a tesztesetek,
amelyek felfedik a specifikacioé szintaktikai valtozasait
hasznosak. Csak elsérendi hibakat idézlnk eld, tehat
egyszerre csak egy mutaciot alkalmazunk, mert azok a
tesztesetek, amelyek az egyszerd valtozasokat detek-
taljak, az egyszer(véaltozasok sorozataként elGallitott
komplex valtozasokat is detektaljak [5].

A tesztesetek akkor kiildnbdztetik meg a mutanst az
eredetitél, ha az mas kimenetet ad. De az operatorok
altal generalt mutansok egy része szemantikailag ekvi-
valens lehet az eredeti rendszerrel, azaz a mutans és
az eredeti rendszer pontosan ugyanazt a kimenetet
adna minden lehetséges bemenetre. Ezeket a mutan-
sokat ekvivalensnek nevezzlk. Az olyan rendszereket,
amelyek ugyanazt a kimenetet adjak minden bemenet-
re, mint az eredeti rendszer, de szemantikusan nem
ekvivalensek azzal, pszeudo-ekvivalenseknek nevez-
zUk (az ekvivalens mutansok a pszeudo-ekvivalens mu-
tansok egy részhalmaza). A teszteseteknél minden
ekvivalenst figyelmen kivil kellene hagyjunk, és min-
den nem-ekvivalenst figyelembe kellene venniink. Ez
komoly problémat okoz a mutacié analizis rendszerek-
nél, mivel altalaban nem lehetséges az ekvivalensek
automatikus identifikalasa, és az ekvivalensek és nem-
ekvivalensek megkllénbdztetése emberi kdzremU(ko-
dést igényel.

2.2. Mutdcids operatorok
A mutéciés operatorok kialakitdsanal nagyon fon-
tos szempont, hogy amennyiben lehetséges, ne adja-
nak egyetlen pszeudo-ekvivalenst se, és természete-
sen minimalizaljak az ekvivalensek szamat. Az operato-
rok kialakitasanak alapelvei:
— az operatorok atomi hibakat hivatottak modellezni;
— csak elsrendd,
— csak szintaktikailag helyes;
— és csak szemantikusan helyes mutansokat szeret-
nénk generalni;
— az operatorok véges, és a lehetd legkisebb szamu
mutanst generaljak.
Ot operator osztalyt van definialva [4] a kommunika-
6 kiterjesztett véges automatakhoz, attél fliggden,

28

hogy az automata mely részérét médositjak: allapot-,
bemenet-, kimenet-, cselekvés- és predikatum-moédosi-
t6 operatorok.

Minden osztalynal harom tipusu operatort adhatunk
meg, attol fliggéen, hogy milyen jellegi hibat reprezen-
talnak: noveld, csokkentd és cserél6 operatorok.

2.3. Teszteset — tesztkritérium megfeleltetés

A kbvetkez6 algoritmus segitségével egy véges mé-
retl, strukturalatlan, és nagymértékben redundans
tesztkészlet (amelyet példaul egy a rendszerspecifika-
cié allapotterét bejaré allapottér-bejaré algoritmussal
kaphatunk) minden egyes tesztesetéhez hozzarendel-
hetiink egy tesztkritérium-halmazt. Ha mutacids opera-
torokat alkalmazunk a nem megfelel6 bemenetek meg-
figyelésére, ennek a kezdeti tesztkészletnek szintén
tartalmaznia kell nem megfelel6 teszteseteket.

Legyen C egy kétdimenzids, boole-algebrai értéke-
ket tartalmaz6 matrix.

0) Generaljunk egy teszteset-halmazt;

1) Alkalmazzuk egy mutacios operatort a véges auto-
matara, hogy létrehozzuk az i. mutanst;

2) Futtassuk le az 6sszes tesztesetet a mutans speci-
fikacion, és figyeljik meg az inkonzisztenciakat:
amennyiben a teszteset az eredeti specifikaciotol
eltér6é eredményt ad, a teszteset detektalja az adott
mutanst

3) Hozzuk létre a Ci oszlopvektort (C matrix i. oszlopat)

— legyen Cifjj=0

ha a j. teszteset nem detektalja az i. mutanst;
— legyen Cifj] = 1

ha a j. teszteset detektdlja az i. mutanst;

4) Ismételjik a 2-4. |épéseket, ahol i 1-t6l N-ig vesz fel
értékeket, amig létre nem hoztuk az 6sszes lehet-
séges mutanst;

5) Nyerjlk ki a C kritériummatrixot, ahol a sorok az ere-
deti halmaz teszteseteit abrazoljak, az oszlopok pe-
dig a mutansokat.

3. Tesztszelekcio
evolucios algoritmusokkal

A szelekcios folyamat célja, hogy a tesztesetek egy op-
timalis részhalmazat kapjuk a mar meglévé strukturalat-
lan, és nagymértékben redundans halmazbdl. Erre a
célra harom kiilénbdz6 ,puha” algoritmust alkalmaztunk:
a Genetikus Algoritmust (GA), a Pszeudo-Bakterialis Ge-
netikus Algoritmust (PBGA), és a Bakteridlis Evolucios
Algoritmust (BEA).

Az evollcios algoritmusokra azért esett a valasztas,
mert j6 eredményeket adnak elfogadhaté idén belil, ké-
pesek az igen bonyolult esetek kezelésére is, és kony-
nyen integralhatéak a tesztgeneracios folyamatba [6].

3.1. Altaldanos megfontolasok

Egyedek: Egy egyed a probléma egy lehetséges
megoldasa, a mi esetlinkben egy optimalizalt teszt-
készlet. Két lehet6séglink volt az egyedek abrazolasa-

LIX. EVFOLYAM 2004/8

Automatikus tesztgeneralas...

ra: egy fix hosszusagu, N bitbdl allé sorozat, ahol N az
eredeti halmaz 6sszes tesztkészletének szama, és egy
bit értéke 1, ha az adott teszteset szerepel a tesztkész-
letben. Ezeket az egyedeket bitsorozat egyedeknek
neveztiik el. A masik megoldas egy valtoz6 méretd, 1
és N kozotti értékeket tartalmazé halmaz, amelyben
minden elem az eredeti halmaz egy tesztesetét abra-
zolja. Ezeket az egyedeket mutaté-halmaz egyedek-
nek neveztik el. Az utébbi esetben természetesen le-
hetséges, hogy egy tesztkészlet t6bbszér tartalmazza
ugyanazt a tesztesetet, &m ezek az egyedek maga-
sabb futtatasi koéltséggel rendelkeznek barmiféle
egyéb érték nelkil, igy hamar kiesnek a szelekci6 so-
ran. Az algoritmustol figgéen egyik vagy mindkét abra-
zolasi médot alkalmaztuk.

Célfuggvény: a célfliggvény méri az egyes egyedek
mindségét, ezt prébalja minimalizalni az algoritmus. A
kivant tesztkészletek eléréséhez a célfliggvénynek a
kévetkezdket kell figyelembe vennie:

— Atesztkészlet futtatasi kéltségét minimalizalni sze-
retnénk, a lefedett tesztkévetelmények redundan-
ciajanak minimalizalasaval.

— A tesztkészlet fedje le az 6sszes kdvetelményt.

Célfuggvényiink az 6sszes teszteset végrehajtasi
kéltségeinek 6sszege, valamint egy biintet6 érték min-
den egyes lefedetlen tesztkdvetelményert:

O=c3"C+c4*M 3)
ahol C az egyed koltsége, M a lefedetlen kdvetel-

meények szama, ¢3 és ¢4 pedig sllyozé tényezbk, ame-
lyeket ugy kell megvalasz-

Teszteset 1

Y

Teszteset 2

Teszteset 3

Teszteset 4

Teszteset 5

Y'Y

Teszteset 6

Teszteset 7

Teszteset 8

Teszteset 9

Teszteset 10

E

Lt JofofJofsfefofsfr]o]

tani, hogy ne legyen gaz-
dasagos elhagyni a teszte-
seteket lefedetlen kdvetel-
mények aran.

A

3.2. Genetikus algoritmus

A genetikus algoritmus
egy olyan optimalizacids el-
jaras, amely a természet-
ben lejatsz6dé szelekcios fo-
lyamatokat modellezi [7]. A
kanonikus GA, amelyet itt al-
kalmaztunk, az aldbbiak sze-
rint mikodik:

7]

elsfefr]e]

2. abra Bitsorozat és mutaté-halmaz egyedek

Teszteset kéltsége: a vizsgalati kdltség az adott
teszteset futtatasi koltségét reprezentalja, ami jelent-
het végrehajtasi idét, vagy hardverkévetelményeket.
Legyen T = {t1,t2,...,tn} a t1,12,...,tn teszteseteket tar-
talmazé készlet, és R = {r1,r2,...,rk} az altala lefedett
tesztkdvetelmények halmaza.

Ekkor minden teszteset-halmazhoz hozzarendeljik
a c: T- R pozitiv fuiggvényt.

Egy adott T tesztkészlet futtatasi kéltségét ekkor
az alabbi fliggvény adja:

c(T)=Y. (1) (1)
teT

Az egyéni tesztesetek futtatasi koltsége lehet tet-
sz6legesen kijeldlt, vagy a mutacié-analizis fazis soran
megmeért érték.

Itt azt feltételezzik, hogy minden tesztkévetelmény
ellendrzése bizonyos eréforrasigénnyel rendelkezik, va-
lamint a teszteset inicializalasa is er8forrasokat igényel.
igy egy teszteset koltségét az alabbiak szerint kapjuk
meg:

c(t)y =cl +c2*L 2)

ahol c1 az inicializacioés koéltség, c2 az egyes teszt-
kévetelmények ellenérzéséhez rendelhetd koéltség, L
pedig az ellendrzétt tesztkdvetelmények szama.

LIX. EVFOLYAM 2004/8

Inicializalas

Kezdeti populacié létrehozasa
Kezdeti populacié kiértékelése
generaci6 :=0

Generacios hurok
{
Fitness értékek szamitasa
Szelekcid
Rekombinacié
Mutacio
Uj egyedek kiértékelése
Uj egyedek visszahelyettesitése

generacioé := generacio + 1
} amig generacié < max. generacio

Az egyedek bitsorozatok, mivel a keresztezés alkal-
mazasa sokkal intuitivabb volt igy. Tekintsiik at egyen-
ként az algoritmus lépéseit:

Fitness: Az egyedek fitness-értékét a linearis rang-
sor-alapu modszer alapjan végeztiik, ahol az i. egyed
Fifitness-értékét az alabbi képlet adja:

e oS-

F.=2—-sp+2*(sp N "
ind

(4)

29

HiRADASTECHNIKA

Ahol sp a szelekcids nyomas (a mi esetlinkben sp=2),
pos(fi) az i. egyed pozicidja a célfiiggvény alapjan, és
Nind a populacié mérete.

Szelekcid: Az egyedeket az utddok létrehozasara
a Sztochasztikus Univerzalis Mintavételezési mddszer-
rel valasztjuk ki: leképezzilk az egyedeket egy szam-
tengelyre, ahol minden egyednek a fitness-értékének
megfelelé hossz jut. Ezek utan generalunk egy vélet-
len szamot az [1..szll6k_szama] intervallumban, ahol
szlilbk szama az utdédok létrehozasara kivalasztandé
egyedek szama. Ezek utan ezt az értéket eltoljuk az
i*(fitness-ek 6sszege)/(szul6k_szama) értékkel, ahol i O
[0 .. szll6k_szama — 1], és minden egyes alkalommal
kivalasztjuk azt az egyedet, amelyre ez az érték mutat
a szamtengelyen.

Rekombinacio: Itt az egyenletes keresztezési mdd-
szert alkalmazzuk: generalunk egy véletlenszer(bit-
mintat. Ezek utan ugy allitjuk el az utédokat, hogy a
sz(l6k bitjeit felcseréljiik azokban a pozicidkban, ahol
ennek a maszknak az értéke 1.

Mutacié: Minden egyedet kis valdszinlséggel mut-
alunk, hogy egy nagymeérték(i valtozasokat is lehetévé
tegylink. Egy véletlenszer(poziciotdl egy el6re meg-
hatarozott hosszlisagu szegmensen minden bitet Pm
val6szinliséggel mutalunk.

3.3. Pszeudo-bakteridlis genetikus algoritmus

A 90-es évek masodik felében kifejlesztett bakteria-
lis algoritmusok a baktériumok evolucios folyamatait mo-
dellezik. A legegyszer(bb bakteridlis algoritmus a psze-
eudo-bakterialis genetikus algoritmus [8].

Az algoritmus elején létrehozunk egy véletlenszer(
egyedet, amelyre alkalmazzuk a bakterialis mutaciét.
Az eredeti egyedrdl n — 1 masolatot (klént) hozunk létre.
Ezek utan véletlenszeriien kivalasztjuk a kromoszdéma
egy részét, amelyet minden klénnal mutalunk, de valto-
zatlanul hagyjuk az eredeti egyednél. A mutacié utan
kiértékeljlk az 6sszes egyedet, és a legjobb egyed mu-
talt részét atmasoljuk a tébbi klénba.

Ezt a mutacid-kiértékelés-szelekcio-visszahelyette-
sités ciklust addig ismételjik, amig a kromoszéma 0sz-
szes részét nem mutaltuk. Ezek utan kivalasztjuk a leg-
jobb egyedet, a tébbit pedig megszintetjik. A ciklust
addig ismételjik, amig kielégit6 eredményt kapunk,
vagy elériink egy elére meghatarozott generaciésza-
mot.

Ezt az algoritmust mindkét tipust egyeddel léetre-
hoztuk. A bitsorozat tipusu egyedeknél a mutacié meg-
egyezik a GA esetén alkalmazottal. A mutaté-halmaz
egyedek esetében a mutaciénak lehetévé kell tennie,
hogy az egyed hossza megvéltozzon, mivel nincsen a
priori informaciénk az optimalis egyedhosszlsagrol. igy
a mutacié harom tipusu valtozast idézhet el6:

— teszteset helyettesitését egy masik tesztesettel;

— egy teszteset torlését, vagy

— egy teszteset hozzaadasat.

3.4. Bakteridlis evolucids algoritmus
A bakterialis evolucids algoritmus a PBGA egy to-
vabbfejlesztett valtozata, ahol a keresést egyszerre tébb
egyeden végezzik parhuzamosan. Ezt az algoritmust
a baktérium-populacidk géntranszfer képessége ihlette
[9].
Az algoritmus az aldbbiak szerint miikodik:
1) Létrehozunk egy n egyedbdl allé véletlenszerd
populaciét
2) Minden egyedre alkalmazzuk
a bakteridlis mutacioét (a 3.3.-ban leirtak szerint)
3) Ninf-szer alkalmazzuk a géntranszfer miveletet,
ahol Ninf az infekcidk szama.
Ennél a Iépésnél egy als6 (rosszabb egyedek)
es egy felsé (jobb egyedek) félre osztjuk
a populacioét, és a fels6 félbél az alsé felbe
géneket helyeziink at.
4) A 2-4. |épéseket addig ismételjik, amig kielégit
eredményt nem kaptunk, vagy elértiink
egy el6re definialt generaciészamot.
Ennél az algoritmusnal médositanunk
kellett az egyedek felépitésén, hogy jol

| | | | eredeti baktérium elhatérolf géneket tarta}llmazzapak, m|
vel a géntranszfer-mdveletnel szik-
) ség van egy mérdszamra, ami azt mu-
| | | | 1. Kion tatja meg, mennyire ,j6” egy gén. A
[Tl | 2. ki6n mutato-halmaz egyedeket egy elbre
' meghatarozott szamu génre osztottuk,
: amelyek valtoz6 szamu tesztesetet tar-
' talmazé csoportok. A gén jésaganak
[T | N.kion két kulénboz6 verziéjat hasznaltuk:
¢ Elsé valtozat
. 1 1. Kién N !En’nél az in]plementéciénél egy gén
jésagat az hatarozza meg, hogy atlago-
[| 1.klon san milyen koltséggel fed le egy teszt-
. kévetelményt.
'
(]
° 3. dbra
I:_ | N. kién A pszeudo-bakteridlis genetikus algoritmus
30 LIX. EVFOLYAM 2004/8

Automatikus tesztgeneralas...

igy ezt a kdvetkez6képpen szamitjuk:

G
z ()

—_iel
F="%
ahol F a gén jésaga, Ci a tesztesetek koltsége, /a
geén teszteseteinek halmaza, és R a gén altal lefedett
tesztkdvetelmények szama.
A géntranszfer-m(ivelet soran a fels6 fél egy bakté-
riumabdl a legjobb génnel helyettesitjik az also fél egy
baktériumanak legrosszabb génjét (4. abra).

| 65231961 62145 8458763 4855 2462179

|273 748512|5244725 | 7236187 351|

|273 748512|4855 |7236187 351|

4. abra Géntranszfer 1

Masodik valtozat

Ennél a megkdzelitésnél annyi részre osztjuk a teszt-
kdvetelményeket, ahany gént tartalmaz a baktérium. A
célunk az, hogy minden gén a tesztkévetelmények egy
meghatarozott részét fedje le. Egy gén jésagat ugyan-
Ugy hatarozzuk meg, mint a célfliggvényt az el6z8 ese-
tekben, de a lefedetlen tesztkévetelményeket csak a
gén altal lefedett intervallumon vesszik figyelembe. A
geén j6sagat az alabbi képlet adja (5. abra).

F=c1*C + c2*M, (5)

ahol Fa gén jésaga, C a gén kéltsége, Mia gén al-
tal lefedett halmazon kihagyott tesztkdvetelmények
szama, c1 és c2 pedig sulyozé tényezék.

A géntranszfer soran egy a fels6 félbdl vett forras-
baktériumbdl kivalasztunk egy véletlenszer(i gént, és
ha jobb az als6 félbdl vett célbaktérium ugyanazon po-

e

[30625]72156910|375| 76 8161[91361|

[158]|666259] 71209461836 [852397]

|158|72156910|71 20946|1836|852397‘

5. abra Géntranszfer 2

3.5. Algoritmusok dsszehasonlitasa

Hogy 6sszehasonlithassuk ezen algoritmusok haté-
konysagat a teszteset-szelekcié soran, egy fiktiv, 100
tesztesetet tartalmaz6 halmazon futtattuk éket (amint
azt kés6bb latni fogjuk, az INRES protokoll kezdeti
tesztkészlete csak 41 tesztesetet tartalmaz, ami tdl ke-
vés, hogy kiildnbségek mutatkozzanak ezen algoritmu-
sok konvergenciajaban).

LIX. EVFOLYAM 2004/8

350

300 T

250

20T WENETNENERNENENNNR
ssessnnnsnnncalll

celfliggveny
o

150 1

100

50

0 50 100 150 200 250
generacio

Genetikus algoritmus X BEA, els6 valtozat

B PBGA, bitsorozat X BEA, méasodik valtozat

A PBGA, mutaté-halmaz

6. abra Algoritmusok konvergenciaja

A kllénb6z6 algoritmusok konvergenciaja a 6. db-
ran lathato.

4. Automatikus tesztkészlet-generalas

Bemutatjuk a teljes tesztkészlet-generalasi eljarast. Ezt
a folyamatot a jél ismert INRES mintaprotokoll példaja-
val illusztraljuk:

0. Létrehozunk egy formalis SDL protokollspecifika-
ciot. Erre a célra kiforrott eszkdzok allnak rendelke-
zésre [3]. A 7. abra mutatja az INRES protokoll SDL
specifikacidjanak rendszer-attekintd részét.

1. Az SDL specifikacién lefuttatunk egy allapottér-be-
jaré algoritmust, amely egy nagymeértékben redun-
dans, strukturalatlan tesztkészletet eredményez.

2. A mutacié-analizis segitségével meghatarozzuk a
tesztkdvetelImények matrixat erre a teszteset-hal-
mazra. Az 1. tablazat az INRES rendszer SDL spe-
cifikacidjanak allapottér-bejarasaboél eredé 41 tesz-
tesetbdl allo teljes tesztkészletét mutatja, az egyes
tesztesetek koéltségével, valamint a teljes tesztkész-
let kdltségével, ahol a tesztesetek kdltségét (2) sze-
rint szamitottuk, c1=20 és c2=5 értékekkel.

3. Kivalasztjuk a tesztesetek optimalis részhalmazat a
halmazbdl a fent bemutatott evollciés algoritmu-
sok egyikével. Ez egy olyan tesztkészletet eredmé-
nyez, amely minimalis redundanciaval és végrehaj-
tasi koltséggel lefedi az dsszes tesztkritériumot. A
2. tablazat az INRES protokoll optimalizalt teszt-
készletét mutatja.

(Megjegyzés: Ebben az esetben a tesztesetek kiva-
lasztasa elég egyszer(, és bar nem feltétlenil van igy
nagyon nagy tesztkészletek esetében, minden evollci-
0s algoritmus ugyanazt a megoldast talalta meg néhany
generacio alatt.)

31

HiRADASTECHNIKA

\ ; ind, IDATind]
Lefedett Teszteset System INRES ISAPIni 1 [ICONconf, IDISind] ISAPires [[ICONlH ,

Teszteset tesztkritériumok koltsége y [ICONreq, IDATreq] [ICONresp, IDISreq]
inres01 48 260 Block Station_Ini [ICONconf, IDISind]| |Block Station Res [ICONind, IDATind]
inres02 19 115 ISAP | [ICONreq, IDATreq] ISAP][ICONresp, IDISreq]
inres03 36 200 —
inres04 21 125 Process Initiator Process Responder
inres05 a4 240 -
inres06 34 190 ; 5
inres07 46 250
inres08 21 125
inres09 27 155
inres10 60 320 [AK, CC, DR] [CR, DT]
inres11 11 75 IPDU 1 cR, DT) IPDUI 2%, cc, DR]
inres12 46 250
inres13 89 465 Process Coder_Ini Process Coder_Res
inres14 59 315
inres15 58 310 -
inres16 49 265
inres17 17 105
inres18 46 250
inres19 47 255 [MDATind] [MDATind]

!nresg? g? ?gg MSAPY (MDATreq] MSAP ! [MDATreq]

inres - .

inres22 65 345 MSAP11 HDATIRA] MSAP2 [(MDATind]

inres23 24 140 [MDATT eq] (MDATT eq)

inres24 82 430 Block Medium [MDATind] [MDATind]

inres25 25 145 MSAPr y (MDATTeq] MSAPI2 L paTreq)

inres26 26 150

inres27 78 410 Process MSAP_Manager1 Process MSAP_Manager2

inres28 29 165 IDAT IDAT

inres29 71 375 C\}D L I 1 !)

inres30 30 170 Internal \f

inres31 36 200

inres32 34 190

inres33 66 350

inres34 62 330 . cpl 4 iz
inres3s 35 195 7. abra Az INRES SDL specifikacié
inres36 88 460

nres3? g; o ! tablazat konyabb azonositasara. A szelekcids folyamatban alkal-
inres39 84 440 Kezdeti mazott algoritmusok kérét érdemes lehet tovabb bvite-
:2:::2‘1’ i gzg teszteset- ni, az Ujabb algoritmusok hatékonysagat megvizsgalni.

Teljes tesztkészlet koltsége: 10145 halmaz
inres10 60 320 Irodalom
inres13 89 465
inres14 59 315 L o,
inres23 24 140 2. tablazat [1] ITU-T. Z.100 ajanlas (1992):
nres2? s b Optimalizalt Specification and Description Language (SDL)

teszteset- . .

Teljes tesztkészlet kéltsége: 1815 halmaz [2] CCITT. X.292 ajanlas (1992):

5. Konklazio

Itt egy teljes automatikus tesztgeneralasi modszert mu-
el6 egy tesztkészletet. Csupan egy egyszer(példaval
illusztraltuk az eljarast, de a mutacidé-analizis bizonyitot-
tan jol alkalmazhat6 valos problémakra [4], és az evo-
licios algoritmusok kifejlesztése mdgotti motivald erd ki-
fejezetten a rendkivil komplex problémak kezelése volt.

A konformancia-vizsgalat a tavkdzlési protokollok
fejlesztési folyamatanak kulcsfontossagu része. Mivel a
tesztkészletek eléallitasa idGigényes folyamat, az auto-
matikus tesztgeneralas egyre fontosabb szerepet jat-
szik a fejlesztési folyamatban. Ez a tesztkészlet-genera-
cios eljaras kdnnyen implementalhatd, és mikédSképes
megoldast kinal a val6 életbeli tavk6zlési protokollok
automatikus tesztgeneraldsara, nagymértékben lerévi-
ditve ezzel a fejlesztési folyamatot.

Tovabbi kutatasok targyat képezheti, hogy milyen al-
lapottér-bejaré algoritmusokat érdemes alkalmazni a leg-
kedvez6bb kezdeti tesztkészlet kialakitdasahoz. A muta-
cid-analizis szintén egy gyorsan fejl6d6 terllet, itt is lehe-
t6seég nyilhat a tesztesetek eddiginél gyorsabb és haté-

32

The Tree and Tabular Combined Notation (TTCN)
[3] Telelogic Tau, http://www.telelocig.com
[4] Black P. E., Okun V., Yesha Y. (2000):
Mutation Operators for Specifications.
In The Fifteenth IEEE International Conference on
Automated Software Engineering,
Proceedings ASE 2000, pp.81-88.
[5] Gabor Kovacs, Zoltan Pap, Gyula Csopaki (2002):
Automatic Test Selection based on CEFSM,
Acta Cybernetica 15, pp.583-599.
[6] B. Kotnyek, T. Cséndes:
Heuristic methods for conformance test selection.
[7] J. H. Holland (1992):
Adaptation in Nature and Atrtificial Systems:
An Introductory Analysis with Applications to Biology,
Control and Artificial Intelligence, MIT Press, Cambridge
[8] M. Salmeri, M. Re, E. Petrongari, G. C. Cardarilli (1999):
A Novel Bacterial Algorithm to Extract
the Rule Base from a Training Set,
Dept. of Electronic Engineering, University of Rome
[9] N. E. Nawa, T. Furuhashi (1999):
Fuzzy System Parameters Discovery by
Bacterial Evolutionary Algorithm,
IEEE Tr. Fuzzy Systems 7, pp.608—616.

LIX. EVFOLYAM 2004/8

