
1. Bevezetés

Ahogy a távközlési cégeknek egyre több szolgáltatást
kellett nyújtaniuk, miközben hálózataik integrálására
törekedtek, úgy nôtt a távközlési protokollok komplexi-
tása. Ezzel egyidejûleg ezeknek a hálózatoknak egyre
növekvô megbízhatósági követelményeknek kellett
megfelelniük. Ezzel a komplexitás-növekedéssel a pro-
tokollok specifikációjához szükséges erôfeszítés súlyos
teherré vált, és a megbízhatóság, valamint a gyártók
termékeinek együttmûködése iránti igény átfogóbb
tesztelést tett szükségessé. Ezek a problémák hívták
életre a formális specifikációs eljárásokat, valamint a
formális tesztelési eljárásokat, amelyekkel ellenôrizni le-
het, hogy egy alkalmazás a specifikációnak megfelelô-
en mûködik-e.

A távközlési világban legelterjedtebben használt
formális nyelvek a Specifikációs és Leíró Nyelv (Speci-
fication and Description Language, SDL [1]) a rendsze-
rek specifikálására, amely a rendszert párhuzamosan
mûködô kommunikáló véges automatákkal modellezi,
és a Fa és Táblás Kombinált Jelölésmód (Tree and Ta-
bular Combined Notation, TTCN [2]) a rendszerek feke-
te doboz jellegû ellenôrzésére.

Ma már a rendelkezésre állnak nagymértékben int-
egrált és széles körben elterjedt fejlesztôeszközök [3],
hogy segítsék a fejlesztôket a specifikációs és a vizs-
gálati folyamat során. Ennek ellenére a formális teszt-
készletek elôállítása még mindig jelentôs munkát igé-
nyel, és az emberi tényezô továbbra is a legdrágább,
és legtöbb hiba forrása. Mivel a tesztkészleteket sok-
szor több százszor vagy ezerszer kell lefuttatni, a futá-
si idô és a hardverkövetelmények szintén kulcsfontos-
ságúak.

Ebben a cikkben bemutatunk egy módszert az au-
tomatikus tesztgenerálásra a rendszer SDL leírásából.
Ennek a tesztgenerációs folyamatnak négy fô lépése
van:

1) formális specifikálás SDL nyelven
2) teszteset-halmaz elôállítása egy állapottér-bejáró

algoritmussal
3) mutáció-analízis
4) egy optimális teszteset-részhalmaz kiválasztása
Elôször bemutatjuk a mutáció-analízis eljárást; ezek

után megmutatjuk, hogyan alkalmazunk evolúciós al-
goritmusokat egy optimális teszteset-részhalmaz kivá-
lasztására, majd végül bemutatjuk a teljes tesztgener-
ációs folyamatot az INRES protokoll példáján.

2. Mutáció-analízis

2.1. Áttekintés
A mutáció-analízis egy fehér doboz módszer teszte-

setek kialakítására, azaz a rendszer belsô logikájának
ismeretén alapul. A hagyományos mutáció-analízist a
programkódokban található hibák felderítésére dolgoz-
ták ki, ám a mi esetünkben programok helyett specifi-
kációkra alkalmazzuk, a megfelelô fekete doboz teszte-
setek kiválasztásához.

Egy mutáció-analízis rendszerben definiálni kell egy
mutációs operátor készletet [4], ahol minden operátor
egy atomi szintaktikai változást testesít meg. Ezeknek
az operátoroknak az alkalmazása két okból praktikus.
Egyrészt lehetôvé teszik a hibatípusok formális leírá-
sát, másrészt lehetôvé teszik a mutánsok automatikus
generálását. Az operátorokat szisztematikusan alkal-
mazva a specifikációra egy mutánskészletet generál-
hatunk.

Egy mutáció-analízis rendszer 3 komponensbôl áll:
– az eredeti rendszer,
– a mutáns rendszer – az eredeti rendszerhez képest

egy apró szintaktikai változást tartalmaz. A mután-
sokat a mutációs operátorok alkalmazásával kapjuk,
ahol minden operátor egy apró szintaktikai változást
testesít meg,

LIX. ÉVFOLYAM 2004/8 27

Automatikus tesztgenerálás
formális protokollspecifikáció alapján

VINCZE GÁBOR

Budapesti Mûszaki és Gazdaságtudományi Egyetem, Távközlési és Médiainformatikai Tanszék

vincze@alpha.ttt.bme.hu

Kulcsszavak: konformancia tesztelés, tesztgenerálás, mutáció-analízis, evolúciós algoritmusok, bakteriális algoritmus

A cikkben egy eljárást mutatunk be automatikus tesztgenerálásra a protokoll formális SDL specifikációja alapján. A protokoll-

tesztelés a fejlesztési folyamat fontos része, ám a tesztkészletek kialakítása idôigényes feladat. Ennek a fázisnak az auto-

matizálása csökkenti a bevezetési idôt, és egy komoly hibaforrást szüntet meg. Megmutatjuk, hogyan használható a mutáció-

analízis egy állapottér-bejáró algoritmusból eredô tesztesetek, és a tesztkritériumok megfeleltetésének. Ezek után evolúciós

algoritmusokat alkalmazunk egy optimális részhalmaz kiválasztására ebbôl a kezdeti tesztkészlet-halmazból. Ezeket az eljá-

rásokat felhasználva egy teljes tesztgenerációs folyamatot építünk fel, amellyel egy protokoll formális specifikácójából teszt-

készleteket kapunk.

Reviewed

– orákulum – egy ember, vagy a legtöbb esetben egy
gép, amely megkülönbözteti az eredeti rendszert a
mutánstól a környezettel való interakciói alapján.

1. ábra Mutáció-analízis

Abból a feltételezésbôl indulunk ki, hogy a véges
automatát megalkotó olyan specifikációt készít, amely
közel áll az elvárásokhoz, és ezért azok a tesztesetek,
amelyek felfedik a specifikáció szintaktikai változásait
hasznosak. Csak elsôrendû hibákat idézünk elô, tehát
egyszerre csak egy mutációt alkalmazunk, mert azok a
tesztesetek, amelyek az egyszerû változásokat detek-
tálják, az egyszerû változások sorozataként elôállított
komplex változásokat is detektálják [5].

A tesztesetek akkor különböztetik meg a mutánst az
eredetitôl, ha az más kimenetet ad. De az operátorok
által generált mutánsok egy része szemantikailag ekvi-
valens lehet az eredeti rendszerrel, azaz a mutáns és
az eredeti rendszer pontosan ugyanazt a kimenetet
adná minden lehetséges bemenetre. Ezeket a mután-
sokat ekvivalensnek nevezzük. Az olyan rendszereket,
amelyek ugyanazt a kimenetet adják minden bemenet-
re, mint az eredeti rendszer, de szemantikusan nem
ekvivalensek azzal, pszeudo-ekvivalenseknek nevez-
zük (az ekvivalens mutánsok a pszeudo-ekvivalens mu-
tánsok egy részhalmaza). A teszteseteknél minden
ekvivalenst figyelmen kívül kellene hagyjunk, és min-
den nem-ekvivalenst figyelembe kellene vennünk. Ez
komoly problémát okoz a mutáció analízis rendszerek-
nél, mivel általában nem lehetséges az ekvivalensek
automatikus identifikálása, és az ekvivalensek és nem-
ekvivalensek megkülönböztetése emberi közremûkö-
dést igényel.

2.2. Mutációs operátorok
A mutációs operátorok kialakításánál nagyon fon-

tos szempont, hogy amennyiben lehetséges, ne adja-
nak egyetlen pszeudo-ekvivalenst se, és természete-
sen minimalizálják az ekvivalensek számát. Az operáto-
rok kialakításának alapelvei:

– az operátorok atomi hibákat hivatottak modellezni;
– csak elsôrendû,
– csak szintaktikailag helyes;
– és csak szemantikusan helyes mutánsokat szeret-

nénk generálni;
– az operátorok véges, és a lehetô legkisebb számú

mutánst generálják.
Öt operátor osztályt van definiálva [4] a kommuniká-

ló kiterjesztett véges automatákhoz, attól függôen,

hogy az automata mely részérét módosítják: állapot-,
bemenet-, kimenet-, cselekvés- és predikátum-módosí-
tó operátorok.

Minden osztálynál három típusú operátort adhatunk
meg, attól függôen, hogy milyen jellegû hibát reprezen-
tálnak: növelô, csökkentô és cserélô operátorok.

2.3. Teszteset – tesztkritérium megfeleltetés
A következô algoritmus segítségével egy véges mé-

retû, strukturálatlan, és nagymértékben redundáns
tesztkészlet (amelyet például egy a rendszerspecifiká-
ció állapotterét bejáró állapottér-bejáró algoritmussal
kaphatunk) minden egyes tesztesetéhez hozzárendel-
hetünk egy tesztkritérium-halmazt. Ha mutációs operá-
torokat alkalmazunk a nem megfelelô bemenetek meg-
figyelésére, ennek a kezdeti tesztkészletnek szintén
tartalmaznia kell nem megfelelô teszteseteket.

Legyen C egy kétdimenziós, boole-algebrai értéke-
ket tartalmazó mátrix.

0) Generáljunk egy teszteset-halmazt;
1) Alkalmazzuk egy mutációs operátort a véges auto-

matára, hogy létrehozzuk az i. mutánst;
2) Futtassuk le az összes tesztesetet a mutáns speci-

fikáción, és figyeljük meg az inkonzisztenciákat:
amennyiben a teszteset az eredeti specifikációtól
eltérô eredményt ad, a teszteset detektálja az adott
mutánst

3) Hozzuk létre a Ci oszlopvektort (C mátrix i. oszlopát)
– legyen Ci[j] = 0

ha a j. teszteset nem detektálja az i. mutánst;
– legyen Ci[j] = 1

ha a j. teszteset detektálja az i. mutánst;
4) Ismételjük a 2-4. lépéseket, ahol i 1-tôl N-ig vesz fel

értékeket, amíg létre nem hoztuk az összes lehet-
séges mutánst;

5) Nyerjük ki a C kritériummátrixot, ahol a sorok az ere-
deti halmaz teszteseteit ábrázolják, az oszlopok pe-
dig a mutánsokat.

3. Tesztszelekció
evolúciós algoritmusokkal

A szelekciós folyamat célja, hogy a tesztesetek egy op-
timális részhalmazát kapjuk a már meglévô strukturálat-
lan, és nagymértékben redundáns halmazból. Erre a
célra három különbözô „puha” algoritmust alkalmaztunk:
a Genetikus Algoritmust (GA), a Pszeudo-Bakteriális Ge-
netikus Algoritmust (PBGA), és a Bakteriális Evolúciós
Algoritmust (BEA).

Az evolúciós algoritmusokra azért esett a választás,
mert jó eredményeket adnak elfogadható idôn belül, ké-
pesek az igen bonyolult esetek kezelésére is, és köny-
nyen integrálhatóak a tesztgenerációs folyamatba [6].

3.1. Általános megfontolások
Egyedek: Egy egyed a probléma egy lehetséges

megoldása, a mi esetünkben egy optimalizált teszt-
készlet. Két lehetôségünk volt az egyedek ábrázolásá-

HÍRADÁSTECHNIKA

28 LIX. ÉVFOLYAM 2004/8

ra: egy fix hosszúságú, N bitbôl álló sorozat, ahol N az
eredeti halmaz összes tesztkészletének száma, és egy
bit értéke 1, ha az adott teszteset szerepel a tesztkész-
letben. Ezeket az egyedeket bitsorozat egyedeknek
neveztük el. A másik megoldás egy változó méretû, 1
és N közötti értékeket tartalmazó halmaz, amelyben
minden elem az eredeti halmaz egy tesztesetét ábrá-
zolja. Ezeket az egyedeket mutató-halmaz egyedek-
nek neveztük el. Az utóbbi esetben természetesen le-
hetséges, hogy egy tesztkészlet többször tartalmazza
ugyanazt a tesztesetet, ám ezek az egyedek maga-
sabb futtatási költséggel rendelkeznek bármiféle
egyéb érték nélkül, így hamar kiesnek a szelekció so-
rán. Az algoritmustól függôen egyik vagy mindkét ábrá-
zolási módot alkalmaztuk.

2. ábra Bitsorozat és mutató-halmaz egyedek

Teszteset költsége: a vizsgálati költség az adott
teszteset futtatási költségét reprezentálja, ami jelent-
het végrehajtási idôt, vagy hardverkövetelményeket.
Legyen T = {t1,t2,…,tn} a t1,t2,…,tn teszteseteket tar-
talmazó készlet, és R = {r1,r2,…,rk} az általa lefedett
tesztkövetelmények halmaza.

Ekkor minden teszteset-halmazhoz hozzárendeljük
a c : T→R pozitív függvényt.

Egy adott T tesztkészlet futtatási költségét ekkor
az alábbi függvény adja:

(1)

Az egyéni tesztesetek futtatási költsége lehet tet-
szôlegesen kijelölt, vagy a mutáció-analízis fázis során
megmért érték.

Itt azt feltételezzük, hogy minden tesztkövetelmény
ellenôrzése bizonyos erôforrásigénnyel rendelkezik, va-
lamint a teszteset inicializálása is erôforrásokat igényel.
Így egy teszteset költségét az alábbiak szerint kapjuk
meg:

c(t) = c1 + c2*L (2)

ahol c1 az inicializációs költség, c2 az egyes teszt-
követelmények ellenôrzéséhez rendelhetô költség, L
pedig az ellenôrzött tesztkövetelmények száma.

Célfüggvény: a célfüggvény méri az egyes egyedek
minôségét, ezt próbálja minimalizálni az algoritmus. A
kívánt tesztkészletek eléréséhez a célfüggvénynek a
következôket kell figyelembe vennie:

– A tesztkészlet futtatási költségét minimalizálni sze-
retnénk, a lefedett tesztkövetelmények redundan-
ciájának minimalizálásával.

– A tesztkészlet fedje le az összes követelményt.
Célfüggvényünk az összes teszteset végrehajtási

költségeinek összege, valamint egy büntetô érték min-
den egyes lefedetlen tesztkövetelményért:

O = c3*C + c4*M (3)

ahol C az egyed költsége, M a lefedetlen követel-
mények száma, c3 és c4 pedig súlyozó tényezôk, ame-

lyeket úgy kell megválasz-
tani, hogy ne legyen gaz-
daságos elhagyni a teszte-
seteket lefedetlen követel-
mények árán.

3.2. Genetikus algoritmus
A genetikus algoritmus

egy olyan optimalizációs el-
járás, amely a természet-
ben lejátszódó szelekciós fo-
lyamatokat modellezi [7]. A
kanonikus GA, amelyet itt al-
kalmaztunk, az alábbiak sze-
rint mûködik:

Inicializálás
Kezdeti populáció létrehozása
Kezdeti populáció kiértékelése
generáció := 0

Generációs hurok
{

Fitness értékek számítása
Szelekció
Rekombináció
Mutáció
Új egyedek kiértékelése
Új egyedek visszahelyettesítése

generáció := generáció + 1
} amíg generáció < max. generáció

Az egyedek bitsorozatok, mivel a keresztezés alkal-
mazása sokkal intuitívabb volt így. Tekintsük át egyen-
ként az algoritmus lépéseit:

Fitness: Az egyedek fitness-értékét a lineáris rang-
sor-alapú módszer alapján végeztük, ahol az i. egyed
Fi fitness-értékét az alábbi képlet adja:

(4)

Automatikus tesztgenerálás...

LIX. ÉVFOLYAM 2004/8 29

Ahol sp a szelekciós nyomás (a mi esetünkben sp=2),
pos(fi) az i. egyed pozíciója a célfüggvény alapján, és
Nind a populáció mérete.

Szelekció: Az egyedeket az utódok létrehozására
a Sztochasztikus Univerzális Mintavételezési módszer-
rel választjuk ki: leképezzük az egyedeket egy szám-
tengelyre, ahol minden egyednek a fitness-értékének
megfelelô hossz jut. Ezek után generálunk egy vélet-
len számot az [1..szülôk_száma] intervallumban, ahol
szülôk_száma az utódok létrehozására kiválasztandó
egyedek száma. Ezek után ezt az értéket eltoljuk az
i*(fitness-ek összege)/(szülôk_száma) értékkel, ahol i ∈
[0 .. szülôk_száma – 1], és minden egyes alkalommal
kiválasztjuk azt az egyedet, amelyre ez az érték mutat
a számtengelyen.

Rekombináció: Itt az egyenletes keresztezési mód-
szert alkalmazzuk: generálunk egy véletlenszerû bit-
mintát. Ezek után úgy állítjuk elô az utódokat, hogy a
szülôk bitjeit felcseréljük azokban a pozíciókban, ahol
ennek a maszknak az értéke 1.

Mutáció: Minden egyedet kis valószínûséggel mut-
álunk, hogy egy nagymértékû változásokat is lehetôvé
tegyünk. Egy véletlenszerû pozíciótól egy elôre meg-
határozott hosszúságú szegmensen minden bitet Pm
valószínûséggel mutálunk.

3.3. Pszeudo-bakteriális genetikus algoritmus
A 90-es évek második felében kifejlesztett bakteriá-

lis algoritmusok a baktériumok evolúciós folyamatait mo-
dellezik. A legegyszerûbb bakteriális algoritmus a psze-
eudo-bakteriális genetikus algoritmus [8].

Az algoritmus elején létrehozunk egy véletlenszerû
egyedet, amelyre alkalmazzuk a bakteriális mutációt.
Az eredeti egyedrôl n – 1 másolatot (klónt) hozunk létre.
Ezek után véletlenszerûen kiválasztjuk a kromoszóma
egy részét, amelyet minden klónnál mutálunk, de válto-
zatlanul hagyjuk az eredeti egyednél. A mutáció után
kiértékeljük az összes egyedet, és a legjobb egyed mu-
tált részét átmásoljuk a többi klónba.

Ezt a mutáció-kiértékelés-szelekció-visszahelyette-
sítés ciklust addig ismételjük, amíg a kromoszóma ösz-
szes részét nem mutáltuk. Ezek után kiválasztjuk a leg-
jobb egyedet, a többit pedig megszüntetjük. A ciklust
addig ismételjük, amíg kielégítô eredményt kapunk,
vagy elérünk egy elôre meghatározott generációszá-
mot.

Ezt az algoritmust mindkét típusú egyeddel létre-
hoztuk. A bitsorozat típusú egyedeknél a mutáció meg-
egyezik a GA esetén alkalmazottal. A mutató-halmaz
egyedek esetében a mutációnak lehetôvé kell tennie,
hogy az egyed hossza megváltozzon, mivel nincsen a
priori információnk az optimális egyedhosszúságról. Így
a mutáció három típusú változást idézhet elô:

– teszteset helyettesítését egy másik tesztesettel;
– egy teszteset törlését, vagy
– egy teszteset hozzáadását.

3.4. Bakteriális evolúciós algoritmus
A bakteriális evolúciós algoritmus a PBGA egy to-

vábbfejlesztett változata, ahol a keresést egyszerre több
egyeden végezzük párhuzamosan. Ezt az algoritmust
a baktérium-populációk géntranszfer képessége ihlette
[9].

Az algoritmus az alábbiak szerint mûködik:
1) Létrehozunk egy n egyedbôl álló véletlenszerû

populációt
2) Minden egyedre alkalmazzuk

a bakteriális mutációt (a 3.3.-ban leírtak szerint)
3) Ninf-szer alkalmazzuk a géntranszfer mûveletet,

ahol Ninf az infekciók száma.
Ennél a lépésnél egy alsó (rosszabb egyedek)
és egy felsô (jobb egyedek) félre osztjuk
a populációt, és a felsô félbôl az alsó félbe
géneket helyezünk át.

4) A 2-4. lépéseket addig ismételjük, amíg kielégítô
eredményt nem kaptunk, vagy elértünk
egy elôre definiált generációszámot.

Ennél az algoritmusnál módosítanunk
kellett az egyedek felépítésén, hogy jól
elhatárolt géneket tartalmazzanak, mi-
vel a géntranszfer-mûveletnél szük-
ség van egy mérôszámra, ami azt mu-
tatja meg, mennyire „jó” egy gén. A
mutató-halmaz egyedeket egy elôre
meghatározott számú génre osztottuk,
amelyek változó számú tesztesetet tar-
talmazó csoportok. A gén jóságának
két különbözô verzióját használtuk:

Elsô változat
Ennél az implementációnál egy gén

jóságát az határozza meg, hogy átlago-
san milyen költséggel fed le egy teszt-
követelményt.

HÍRADÁSTECHNIKA

30 LIX. ÉVFOLYAM 2004/8

3. ábra
A pszeudo-bakteriális genetikus algoritmus

Így ezt a következôképpen számítjuk:

(5)

ahol F a gén jósága, Ci a tesztesetek költsége, I a
gén teszteseteinek halmaza, és R a gén által lefedett
tesztkövetelmények száma.

A géntranszfer-mûvelet során a felsô fél egy bakté-
riumából a legjobb génnel helyettesítjük az alsó fél egy
baktériumának legrosszabb génjét (4. ábra).

4. ábra Géntranszfer 1

Második változat
Ennél a megközelítésnél annyi részre osztjuk a teszt-

követelményeket, ahány gént tartalmaz a baktérium. A
célunk az, hogy minden gén a tesztkövetelmények egy
meghatározott részét fedje le. Egy gén jóságát ugyan-
úgy határozzuk meg, mint a célfüggvényt az elôzô ese-
tekben, de a lefedetlen tesztkövetelményeket csak a
gén által lefedett intervallumon vesszük figyelembe. A
gén jóságát az alábbi képlet adja (5. ábra).

F = c1*C + c2*Mi (5)

ahol F a gén jósága, C a gén költsége, Mi a gén ál-
tal lefedett halmazon kihagyott tesztkövetelmények
száma, c1 és c2 pedig súlyozó tényezôk.

A géntranszfer során egy a felsô félbôl vett forrás-
baktériumból kiválasztunk egy véletlenszerû gént, és
ha jobb az alsó félbôl vett célbaktérium ugyanazon po-
zíciójú génjénél, akkor helyettesítjük vele:

5. ábra Géntranszfer 2

3.5. Algoritmusok összehasonlítása
Hogy összehasonlíthassuk ezen algoritmusok haté-

konyságát a teszteset-szelekció során, egy fiktív, 100
tesztesetet tartalmazó halmazon futtattuk ôket (amint
azt késôbb látni fogjuk, az INRES protokoll kezdeti
tesztkészlete csak 41 tesztesetet tartalmaz, ami túl ke-
vés, hogy különbségek mutatkozzanak ezen algoritmu-
sok konvergenciájában).

6. ábra Algori tmusok konvergenciája

A különbözô algoritmusok konvergenciája a 6. áb-
rán látható.

4. Automatikus tesztkészlet-generálás

Bemutatjuk a teljes tesztkészlet-generálási eljárást. Ezt
a folyamatot a jól ismert INRES mintaprotokoll példájá-
val illusztráljuk:

0. Létrehozunk egy formális SDL protokollspecifiká-
ciót. Erre a célra kiforrott eszközök állnak rendelke-
zésre [3]. A 7. ábra mutatja az INRES protokoll SDL
specifikációjának rendszer-áttekintô részét.

1. Az SDL specifikáción lefuttatunk egy állapottér-be-
járó algoritmust, amely egy nagymértékben redun-
dáns, strukturálatlan tesztkészletet eredményez.

2. A mutáció-analízis segítségével meghatározzuk a
tesztkövetelmények mátrixát erre a teszteset-hal-
mazra. Az 1. táblázat az INRES rendszer SDL spe-
cifikációjának állapottér-bejárásából eredô 41 tesz-
tesetbôl álló teljes tesztkészletét mutatja, az egyes
tesztesetek költségével, valamint a teljes tesztkész-
let költségével, ahol a tesztesetek költségét (2) sze-
rint számítottuk, c1=20 és c2=5 értékekkel.

3. Kiválasztjuk a tesztesetek optimális részhalmazát a
halmazból a fent bemutatott evolúciós algoritmu-
sok egyikével. Ez egy olyan tesztkészletet eredmé-
nyez, amely minimális redundanciával és végrehaj-
tási költséggel lefedi az összes tesztkritériumot. A
2. táblázat az INRES protokoll optimalizált teszt-
készletét mutatja.

(Megjegyzés: Ebben az esetben a tesztesetek kivá-
lasztása elég egyszerû, és bár nem feltétlenül van így
nagyon nagy tesztkészletek esetében, minden evolúci-
ós algoritmus ugyanazt a megoldást találta meg néhány
generáció alatt.)

Automatikus tesztgenerálás...

LIX. ÉVFOLYAM 2004/8 31

5. Konklúzió

Itt egy teljes automatikus tesztgenerálási módszert mu-
tattunk be, amely a rendszer SDL specifikációjából állít
elô egy tesztkészletet. Csupán egy egyszerû példával
illusztráltuk az eljárást, de a mutáció-analízis bizonyítot-
tan jól alkalmazható valós problémákra [4], és az evo-
lúciós algoritmusok kifejlesztése mögötti motiváló erô ki-
fejezetten a rendkívül komplex problémák kezelése volt.

A konformancia-vizsgálat a távközlési protokollok
fejlesztési folyamatának kulcsfontosságú része. Mivel a
tesztkészletek elôállítása idôigényes folyamat, az auto-
matikus tesztgenerálás egyre fontosabb szerepet ját-
szik a fejlesztési folyamatban. Ez a tesztkészlet-generá-
ciós eljárás könnyen implementálható, és mûködôképes
megoldást kínál a való életbeli távközlési protokollok
automatikus tesztgenerálására, nagymértékben lerövi-
dítve ezzel a fejlesztési folyamatot.

További kutatások tárgyát képezheti, hogy milyen ál-
lapottér-bejáró algoritmusokat érdemes alkalmazni a leg-
kedvezôbb kezdeti tesztkészlet kialakításához. A mutá-
ció-analízis szintén egy gyorsan fejlôdô terület, itt is lehe-
tôség nyílhat a tesztesetek eddiginél gyorsabb és haté-

konyabb azonosítására. A szelekciós folyamatban alkal-
mazott algoritmusok körét érdemes lehet tovább bôvíte-
ni, az újabb algoritmusok hatékonyságát megvizsgálni.

Irodalom

[1] ITU-T. Z.100 ajánlás (1992):
Specification and Description Language (SDL)

[2] CCITT. X.292 ajánlás (1992):
The Tree and Tabular Combined Notation (TTCN)

[3] Telelogic Tau, http://www.telelocig.com
[4] Black P. E., Okun V., Yesha Y. (2000):

Mutation Operators for Specifications.
In The Fifteenth IEEE International Conference on
Automated Software Engineering,
Proceedings ASE 2000, pp.81–88.

[5] Gábor Kovács, Zoltán Pap, Gyula Csopaki (2002):
Automatic Test Selection based on CEFSM,
Acta Cybernetica 15, pp.583–599.

[6] B. Kotnyek, T. Csöndes:
Heuristic methods for conformance test selection.

[7] J. H. Holland (1992):
Adaptation in Nature and Artificial Systems:
An Introductory Analysis with Applications to Biology,
Control and Artificial Intelligence, MIT Press, Cambridge

[8] M. Salmeri, M. Re, E. Petrongari, G. C. Cardarilli (1999):
A Novel Bacterial Algorithm to Extract
the Rule Base from a Training Set,
Dept. of Electronic Engineering, University of Rome

[9] N. E. Nawa, T. Furuhashi (1999):
Fuzzy System Parameters Discovery by
Bacterial Evolutionary Algorithm,
IEEE Tr. Fuzzy Systems 7, pp.608–616.

HÍRADÁSTECHNIKA

32 LIX. ÉVFOLYAM 2004/8

7. ábra Az INRES SDL specif ikáció

Lefedett Teszteset
Teszteset tesztkritériumok költsége

inres01 48 260
inres02 19 115
inres03 36 200
inres04 21 125
inres05 44 240
inres06 34 190
inres07 46 250
inres08 21 125
inres09 27 155
inres10 60 320
inres11 11 75
inres12 46 250
inres13 89 465
inres14 59 315
inres15 58 310
inres16 49 265
inres17 17 105
inres18 46 250
inres19 47 255
inres20 66 350
inres21 21 125
inres22 65 345
inres23 24 140
inres24 82 430
inres25 25 145
inres26 26 150
inres27 78 410
inres28 29 165
inres29 71 375
inres30 30 170
inres31 36 200
inres32 34 190
inres33 66 350
inres34 62 330
inres35 35 195
inres36 88 460
inres37 37 205
inres38 39 215
inres39 84 440
inres40 41 225
inres41 48 260

Teljes tesztkészlet költsége: 10145

inres10 60 320
inres13 89 465
inres14 59 315
inres23 24 140
inres27 78 410
inres28 29 165

Teljes tesztkészlet költsége: 1815

1. táblázat
Kezdeti
teszteset-
halmaz

2. táblázat
Optimalizált
teszteset-
halmaz

