
1. A formális leíró technikák és
az ASN.1 kapcsolata

Az ASN.1 nyelv alkalmas adattípusok formális leírásá-
ra, szabályhalmazokat definiál, amelyekkel bármely
adattípus átalakítható egy továbbítható bitfolyammá. A
nyelvet (ITU-T X.680 [6], X.691 [8]) alkalmazva a terve-
zésben idôt nyerünk és csökkenthetjük a hibalehetôsé-
geket. A kódolás feladata a modulokkal leírt adatspeci-
fikáció olyan formára hozása, hogy egyértelmûen azo-
nosítható legyen a vételi oldalon. Ehhez az ajánlások
három szabályhalmazt definiálnak, a típusok és a tí-
pusból származtatott értékek reprezentációit, az opcio-
nális mezôt valamint az azonos típusú mezôt. A kódo-
lási szabályokat az X.690-es ajánlás [7] tartalmazza,
elnevezésük rendre a következô: BER, CER, DER. En-
nek kiegészítése az X.691 és X.693 [9], ami a PER és
XER kódolási szabályokat adja a specifikációhoz.

Célszerû egy rendszer viselkedését SDL-ben úgy
leírni, hogy az üzenetváltáshoz ASN.1-es adattípuso-
kat használjunk, mert a TTCN nyelv ismeri az ASN.1
adatdefiníciókat, és ez a késôbbi a tesztelés során
hasznos lehet. Az SDL processzek [3] válto-
zókat manipulálnak, amik értékekkel rendel-
keznek, melyeket a megfelelô kifejezések ki-
értékelése adja. Egy változónak csak egy,
adott adattípusú értéke lehet. Az adattípust
literálok és operátorok összessége együtte-
sen jellemzi. A literálok olyan nevek, amelyek
az egyes értékeket jelölik, az operátorok pe-
dig olyan függvények, amelyeket a literálok
és a változók fölött alkalmazunk kifejezések
szerkesztéséhez. Az operátorok szemantiká-
ját az SDL-ben axiómákkal adjuk meg.

Egy absztrakt adattípus az adatobjektum
funkcionális jellemzôit adja meg, tehát a mû-
velet eredményét az adatobjektummal defi-
niálja és azt, hogy megszorítások nélkül mi-
ként lehet az adatobjektum által képviselt ér-
tékeket megkapni. Az absztrakt adattípus egy

vagy több típust (eng. sort) definiál, amelyek ismert ér-
tékkészlettel és az ezen értelmezett mûveletekkel jelle-
mezhetôk. Általánosan az absztrakt adattípus egy
vagy több osztályt tartalmaz, amelyekre definiálnia kell
az operátorokat, amelyek operandusai lehetnek a kü-
lönbözô osztályok, valamint az egyenleteket amelyek
eredménye mindig egyetlen osztályt ad.

Tehát az absztrakt adattípus tulajdonképpen osztá-
lyok, operátorok és egyenletek összességébôl áll.

Az SDL-ben az absztrakt adattípus nincs megne-
vezve, – csak impliciten létezik – és ennek részeit defi-
niáljuk a különbözô adattípus deklarációkkal. Ezt par-
ciális típusdefiníciónak nevezzük. A rendszerspecifiká-
ciós fa bármely pontjában egyetlen absztrakt adattípus
definíció létezik, amelyet a fa gyökerétôl a kérdéses
pontig parciális típusdefiníciók alkotnak. Természete-
sen az absztrakt adattípusok is rendelkeznek öröklô-
déssel, de nem teljes hierarchia szinten, hanem csak a
közvetlen ôsöktôl van öröklés. A fa egy csomópontjá-
ban csak a csomópont direkt ôseiben szereplô parciá-
lis típusok alkalmazhatóak.

LIX. ÉVFOLYAM 2004/8 19

Az ASN.1 nyelv a protokolltervezésben
POÓS KRISZTIÁN, PAPP ANDRÁS

Veszprémi Egyetem, Mûszaki Informatikai Kar, Információs Rendszerek Tanszék

poos.krisztian@irt.vein.hu, papp.andras@irt.vein.hu

Kulcsszavak: kódolási eljárások, formális leíró technikák, mobil adatátvitel

Az ASN.1 nyelv különbözô alkalmazások közötti üzenetek leírására szolgál, mint ilyen, magas szintû üzenetleírási formákkal

rendelkezik, megkímélve ezzel a protokolltervezôket attól, hogy bit vagy bájt szinten kelljen foglalkozniuk a kommunikáció-

ban résztvevô üzenetek felépítésével. Kezdetben e-mail üzenetek leírására használták. Azóta az ASN.1 olyan alkalmazások

széles körében is használatossá vált, mint például a hálózat-felügyelet, a biztonságos e-mail, mobil telekommunikáció, légi-

irányítás, vagy VoIP. Cikkünkben ezt a nyelvet és sokrétû alkalmazhatóságát mutatjuk be.

Reviewed

1. ábra Az ASN.1 helye az FDT-k között

Az ASN.1 szabvány [6] megkülönböztet kis- és
nagybetûket. Az adattípus kezdôbetûje nagy, a típus-
ból definiált értéké pedig kicsi, valamint a struktúra egy
mezôje is kisbetûvel kezdôdik. A definíció jele ‘::=’,
amely egyben a típus és az értékdefiníció jele is.

2. Az ASN.1 története,
felhasználhatósága

A számítástechnikai fejlôdés kezdetekor a hardvergyár-
tó cégekre nem volt jellemezô, hogy a legyártott chi-
pek, processzorok kompatibilisek legyenek egymással.
Több cég párhuzamosan fejlesztett és termelt, így vál-
tozatos architektúrákat készítettek a piac számára, me-
lyeket természetesen specifikusan lehetett csoportosí-
tani.

Ma is sokféle architektúra létezik (x86, Ultrasparc,
PowerPC, stb), azonban az informatika hajnalán még
több rendszerrel lehetett találkozni. Ilyen különbség
például az, hogy nagyon sok rendszer ASCII kódolást,
az IBM mainframe-jei EBCDIC kódolást használnak, va-
lamint a PC-k 2-es komplemensû, 16 és 32 bites me-
mória-szavakat, a mainframe-ek 60 bites, egyes kom-
plemensû aritmetikát használnak. Hasonlóképpen fel-
fedezhetünk ábrázolási eltéréseket egy Token-Ring és
egy Ethernet hálózat között is. Mindegyik esetben az
adatokat más módon kezeli a két különféle architektú-
ra, így szükség van valamilyen közvetítô módszerre,
amellyel a kétféle rendszer között adatcserét tudunk
végrehajtani.

Amennyiben egy architektúrával dolgozunk, még
akkor is felmerülhet adatábrázolási különbség, mert at-
tól függetlenül, hogy az általunk használt eszközök
egyazon architektúrára épülnek, még többféle operáci-
ós rendszert, és ezen belül sokféle programozási nyel-
vet használhatunk. Példának vegyünk alapul egy adat-
strukúra definiálást egy C és egy Pascal kódrészlettel,
(2. ábra).

2. ábra C és Pascal kódrészlet

Látható, hogy az adatábrázolás más módon törté-
nik a két nyelven. Például egy név tárolására az egyik-
nél karakterek sorozatát, míg a másiknál string típust
használunk.

Ahhoz, hogy egyik architektúráról a másikra, vagy
egyik programnyelvrôl a másik számára érthetôvé te-
gyük a kódot vagy az adatot, valamilyen konverziós esz-
közre van szükségünk. Definiáljuk ehhez a szükséges
szintaxisokat.

Konkrét szintaxisnak nevezzük a küldeni kívánt adat-
reprezentációkat, egy adott programozási nyelvben.

Azért szintaxis, mert figyelembe veszi az adott nyelv le-
xikai és nyelvtani szabályait, és azért konkrét, mert az
alkalmazások kezelik és eleget tesz a gépek architek-
turális feltételeinek.

Hogy megszabaduljunk a konkrét szintaxisok válto-
zatosságától, a továbbítani kívánt adatokat úgy kell
leírni, hogy ne legyenek tekintettel a használt program-
nyelvekre. Ettôl függetlenül azonban a leírásnak figye-
lembe kell vennie egy bizonyos nyelv mind lexikai, mind
grammatikai szabályait, azonban mindig függetlennek
kell maradnia a programozási nyelvektôl és soha nem
telepíthetô közvetlenül a gépbe. Az ilyen leírást nevez-
zük absztrakt szintaxisnak, Abstract Syntax Notation-
nek (ASN) pedig a nyelvet, mellyel az absztrakt szin-
taxis leírható.

A programozási nyelvektôl való függetlenség miatt
az absztrakt szintaxisnak legalább olyan erôsnek kell
lennie, mint bármely nyelv adattípusának, ami tulajdon-
képpen egy rekurzív jelölés, amely lehetôvé teszi kom-
plex adattípusok létrehozását alap adattípusokból
(string, int, char stb.) és típuskonstruktorokból (struct,
union stb.)

A számítási eszközök általi kezelés és értelmezés
alatti bármely félreérthetôség elkerülése végett az ab-
sztrakt szintaxisnak formálisnak kell lennie. Az absz-
trakt szintaxis precízen definiálja az adatot, azonban
nincs szemantikai funkciója.

Már csak egyféle szintaxist kell megvizsgálnunk,
mégpedig az átviteli szintaxist. Ez tulajdonképpen egy
félreérthetetlen oktett string halmaz, mely az absztrakt
szintaxis egy értékét reprezentálja az átvitel során. Ter-
mészetesen ez az átviteli szintaxis teljesen az absz-
trakt szintaxistól függ, csak annyit határoz meg, hogy
az adatokat hogyan kell továbbítani az absztrakt szin-
taxis alapján. Valójában az átviteli szintaxis strukturálja
és irányítja a bájtokat, melyeket a másik gépnek kül-
dünk. Az absztrakt szintaxistól eltérôen ez egy fizikai
mennyiség, és ebbôl fakadóan számításba kell vennie
a bájtok elrendezését, a bitek súlyát stb.

A különbözô átviteli szintaxisokat össze lehet
kapcsolni egy egyszerû absztrakt szintaxissal. Ez
fôleg akkor érdekes, amikor megnô az átviendô
adat mennyisége, és sokkal bonyolultabb kódo-
lás szükséges: ilyen és ehhez hasonló esetek-
ben lehetôség van az átviteli szintaxis megváltoz-
tatására anélkül, hogy hozzányúlnánk az absz-

trakt szintaxishoz. Egy egyszerû ASN.1 adatleírásból
automatikusan annyi konkrét szintaxist és annyi eljá-
rást tudunk származtatni – ami létrehozza az átviteli
szintaxist a kódolókba és dekódolókba –, amennyit csak
akarunk.

Az ASN.1 fordító feladata az automatikus generá-
lás végrehajtása, melyet a 3. ábrán látható szaggatott
vonalak mentén haladva végez el. A folyamat során te-
temes fáradozástól kíméli meg a felhasználót, miköz-
ben lehetôvé teszi tetszôleges számú számítógép ösz-
szekapcsolását. A fordítóba implementálni kell néhány
kódolási szabályt, melyek leírják a kapcsolatot az absz-
trakt és a átviteli szintaxis között.

HÍRADÁSTECHNIKA

20 LIX. ÉVFOLYAM 2004/8

3. ASN.1 az OSI rétegekben

Az ASN.1 [2] felhasználásának bemutatása után tér-
jünk rá használatára az OSI modell rétegeiben. A hét
réteg közül csak a két legfelsôre (megjelenítési, alkal-
mazási réteg) térünk ki, mert csak ezekben jelenik meg
az ASN.1.

A megjelenítési réteg az OSI [4] rétegmodell hatodik
rétege, és legfôbb feladata biztosítani az adatok kódo-
lását, dekódolását. Ahogy az elôzô fejezetben láthat-
tuk, az adatábrázolás az architektúrától és a nyelvtôl is
függhet, ezért egy általános ábrázolás szükséges az
adatcsere lebonyolításához. A megjelenítési réteg biz-
tosítja, hogy az adat ebben a formában kerüljön továb-
bításra, viszont nem törôdik az információ jelentésével.
Ez gyakorlatilag az, hogy a két rendszernek az adatto-
vábbítás elôtt meg kell állapodnia a használni kívánt kó-
dolási szabályban (BER, CER, DER, PER, XER stb.).

Így a megjelenítési réteg az alkalmazási réteg szá-
mára biztosított szolgáltatásai a következôek:

– egyezkedés az átviteli szintaxisról
– átviteli szintaxisok egy gyûjteményének ismerete
– fordítás, a konkrét szintaxis kódolási szabályainak

használatával az átviteli szintaxisra és vissza
– az egyezkedés során meghatározott átviteli

szintaxis összekapcsolása az alkalmazásban
elfogadott absztrakt szintaxissal.

– hozzáférés a viszony réteg szolgáltatásaihoz

Az alkalmazási réteg, mint a legfelsô (hetedik) réteg
feladata az alkalmazások hozzáférése az OSI rétegek-
hez, továbbá olyan szolgáltatások biztosítása, melyek
közvetlenül elérhetôek az alkalmazásból. Egy alkalma-
zás minden kapcsolati eleme egy-egy alkalmazás-enti-
tás, melyek alkalmazási protokollokat és megjelenítési
szolgáltatásokat használnak az információ megosztá-
sához.

Minden egyes alkalmazás adatstruktúrája ASN.1-
ben specifikált APDV-ként továbbítódik. Valamennyi eset-
ben, amikor egy alkalmazás adatot kíván küldeni, biz-

tosítja a megfelelô APDV-t; és annak ASN.1
nevét a megjelenítési réteg számára. A
megjelenítési réteg ismeri az ASN.1 definí-
cióra vonatkozó adatkomponensek típusát
és méretét, valamint kódolásuk, illetve de-
kódolásuk menetét a továbbításhoz. A túlol-
dalon a megjelenítési réteg analizálja a várt
adatstruktúra ASN.1 azonosítóját, miután
már tudja, hogy hány bit tartozik az elsô kom-
ponenshez, hány a másodikhoz, etc... Ez-
zel az információval a megjelenítési réteg
végrehajthatja a szükséges konverziókat,
hogy biztosítani tudja az adatot a fogadó gép
belsô felépítésének figyelembe vételével.

Az OSI alkalmazások által használt ASN.1
reprezentáció egyedüli, mióta az ITU java-
solta, hogy az összes adatcsere az alkalma-

zási és a megjelenítési réteg között ASN.1 absztrakt
szintaxissal legyen megadva. Az alkalmazási réteg szá-
mára azért is szükséges egy ilyen erôs és strukturált je-
lölés, mint az ASN.1, mert itt már nem lehetséges a bi-
tek bájtokban való gyûjtése, mint az alacsonyabb réte-
gekben. Ezenkívül nem várható el az alkalmazás-fej-
lesztôktôl sem, hogy tökéletesen tudatában legyenek
a problémáknak, melyekkel csak akkor találkoznak, ha
az üzeneteket bitekké kódolják.

Az ASN.1 nyelv a protokolltervezésben

LIX. ÉVFOLYAM 2004/8 21

3. ábra A fenti példára vetített szintaxis hármas

Rövidítések

APDV Application Protocol Data Value
ASCII American Standard Code for

Information Interchange
ASN.1 Abstract Syntax Notation 1
BER Basic Encoding Rules
CER Canonical Encoding Rules
DER Distinguished Encoding Rules
EBCDIC Extended Binary Coded

Decimal Interchange Code
EDGE Enhanced Data rates for Global Evolution
FDT Formal Description Techniques
GGSN Gateway GPRS Support Node
GSN GPRS Support Node
GTP GPRS Tunnelling Protocol
ISO International Standards Organization
ITU-T ITU, Telecommunication Standardization Sector
MMS Multimedia Messaging Service
MS Mobile Station
OSI Open System Interconnection
PER Packed Encoding Rules
SDL Specification and Description Language
SGSN Serving GPRS Support Node
TCP Transmission Control Protocol
TTCN Testing and Test Control Notation
UDP User Datagram Protocol
UML Unified Modelling Language
VoIP Voice over IP
WAP Wireless Application Protocol
XER XML Encoding Rules

4. Az ASN.1 szintaxis és
jelölésrendszere

Az ASN.1 fô jellemzôje, hogy az adatok típusokba van-
nak sorolva. A típus egy olyan nem üres halmaz, me-
lyet továbbítás elôtt kódolhatunk. Az ASN.1 típusoknak
[1] a továbbítás miatt speciálisnak kell lenniük, és biz-
tosítaniuk kell a megfelelô funkcionalitásokat.

A fôbb ASN.1 típusok a következôk: BOOLEAN,
NULL, INTEGER, REAL, ENUMERATED, BIT STRING,
OCTET STRING, *...String [6], CHOICE, SEQUENCE,
SET, SEQUENCE OF, SET OF. Ezen típusok haszná-
latával összetett típusokat is készíthetünk.

Amikor egy típust definiálunk, valamilyen nevet kell
adnunk neki, hogy hivatkozhassunk rá. A név nagybe-
tûvel kezdôdik. Minden ASN.1 hivatkozást a ‘::=’ szim-
bólum segítségével hozunk létre:

Hazas ::= BOOLEAN

Az ASN.1 sorok végén nincs pontosvesszô.
A SET, SEQUENCE és CHOICE összetett típusok

egyes elemei mind egyedi azonosítóval rendelkeznek,
mely kisbetûvel kezdôdik. Ezen azonosítók segítségé-
vel a specifikáció sokkal átláthatóbbá válik és könnyeb-
ben olvasható, kezelhetô lesz, azonban az adatátvitel
során ezek az azonosítók nem továbbítódnak. Így ab-
ból a célból, hogy a fogadó gép informálva legyen az
értékek típusáról, és hogy az adatot megfelelôen tud-
juk dekódolni, a továbbító gép kódolója hozzárendel
az azonosítóhoz egy ’tag’-et (cédulát). A kódoló alapér-
telmezés szerint egy ’universal’ nevû ’tag’-et használ.
Van azonban, amikor az alapértelmezett eset nem ele-
gendô a félreérthetôségek elkerüléséhez, ilyenkor
szükséges a „cédulák” határozott jelölése a létrehozan-
dó típusokban a komponensek elôtt. A ’tag’ (cédula) egy
szám szögletes zárójelben, a típus elôtt:

Koordinatak ::= SET {
x [1] INTEGER,
y [2] INTEGER,
z [3] INTEGER OPTIONAL

}

Az ASN.1 megengedi a rekurzív típusok létrehozá-
sát is, amennyiben van olyan eleme a rekurzív típus-
nak, amely véges értékeket tartalmaz:

Lottoszam ::= INTEGER (1..49)
Lottohuzas ::= SEQUENCE SIZE (6) OF Lottoszam

Amennyiben már megírtuk az egyes ASN.1 jelölése-
inket, csak össze kell gyûjtenünk azokat és egy közös
specifikációban egyesítenünk, mely leírja az adatátvitel
szabályait.

Ez szabálycsoport tulajdonképpen egy protokoll
specifikációjának tekinthetô. Egy adott specifikáció egy
vagy több ASN.1 modult tartalmazhat, ahol minden
egyes modul egybefogja a típusokat, értékeket, osztá-
lyokat. A modulnevek nagybetûvel kezdôdnek, és BE-
GIN és END kulcsszavak közé fogják a modulban defi-
niált típusokat:

Module DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
...
END

Az AUTOMATIC TAGS azt jelenti, hogy a specifiká-
ció készítôjének nem kell foglalkozni a szögletes záró-
jelekbe helyezett ’tag’-ekkel, mert azok automatikusan
létrejönnek a fordító által.

5. Az ASN.1 kódolási szabályai

Basic Encoding Rules (BER)
A BER [1] kódolás formátuma minden esetben egy

TLV hármas, ahol az egyes elemek jelentése:
T – type/tag, L – length, V – value.

Mindegyik mezô oktettek sorozata. Maga a V érték
lehet egy új TLV hármas is. A BER kódolás ‘Big Endian’
kódolás, ugyanis a legmagasabb helyi értékû bit a bal
oldalon található. A ’tag’ oktettek (általában egy oktett
elegendô) megfelelnek az értéktípus kódolt címkéjé-
nek. Ha a ’tag’ mezô hossza kisebb, mint 30, akkor az
osztályok és számok kódolt hossza egy oktett lesz. Ha a
’tag’ hosszabb 30-nál, akkor a szám a 6-0. sorszámú –
ne felejtsük el, hogy itt a bitek sorszámozása ’Big En-
dian’ módszerrel történik, melyet a 4. ábrán is láthatunk
– bitek összefûzésébôl épül fel minden oktettben, kivé-
ve az elsôt, ahol az alsó 5 bit mindegyike 1-es értékû
lesz. Az utolsó oktettet kivéve mindegyikben a 7. szá-
mú bit értéke mindig 1. Az elsô T mezô 5. számú bitje
határozza meg, hogy a V csak értéket (primitive) vagy
másik TVL hármast (constructed) tartalmaz.

Az L mezô tartalmazza az aktuálisan kódolt érték
(V) hosszát. Amennyiben az elsô T mezô 5. bitje ’primi-
tive’ kódolási formát jelez, az L mezôt határozott alak-
ban kódolja, ellenben ha az 5. bit ’constructed’ formát
jelez, az L mezô kódolási formátumát a küldô fél vá-
laszthatja meg, hogy határozott vagy határozatlan for-
mában történjen.

A határozott alak lehet rövid (ha az L mezô 127-nél
kisebb), és lehet hosszú, a küldô döntésétôl függôen.
Ez a szabadság megengedi, hogy a protokoll réteg
egy bizonyos számú oktetten kódolja az összes L me-
zôt, két gép közötti specifikus kommunikációnál.

HÍRADÁSTECHNIKA

22 LIX. ÉVFOLYAM 2004/8

4. ábra Balról jobbra: A TLV szekvencia primit ive és constructed esetben és a ’Big Endian’ bitsorrend

A hosszú formában az L rész elsô oktettje a length
mezô hosszát reprezentálja.

A határozatlan forma kódolása olyan esetekben szük-
séges, amikor nem a teljes tartalmi rész ismert a küldô
számára, így annak hossza nem állapítható meg a kó-
dolás elôtt. Ezenfelül másik elônye a határozatlan for-
mának, hogy megvéd minket az értékek kétszeres vizs-
gálatától – mely elôször a hossz megállapításánál, majd
a tényleges adatkódolásnál történik –, így hatéko-
nyabb kódolókat készíthetünk. Ha az érték határozat-
lan alakban van kódolva, két zéró oktett zárja le a kó-
dolt adatot. Ez a két utolsó oktett valójában egy TLV
hármas, amely egy [UNIVERSAL 0]-val címkézett 0
hosszúságú értéket jelképez.

A BER kódolás architektúra független, hiszen erre
az architektúrákban a bitsorrend adott és a kódolási
szabályok könnyen konvertálhatóak.

Canonical and Distinguished Encoding Rules (CER/DER)
Az olyan kódolási szabályt, amely semmilyen sza-

badsági fokot nem hagy, kanonikus kódolási szabály-
nak nevezzük. A BER-bôl két kanonikus kódolási sza-
bályt származtattak, a CER-t [1] és a DER-t [2], ame-
lyek tulajdonképpen a BER specializációi. Ez azt jelen-
ti, hogy egy CER-rel vagy DER-rel kódolt szöveget egy
BER dekódolóval tudunk dekódolni. Természetesen ez
a másik irányba nem mûködik.

A két kódolási szabály egy érdekes tulajdonságot,
az absztrakt értékek és kódolásuk közötti kétirányúsá-

got adja kezünkbe, aminek segítségével bármely ASN.1
absztrakt értékhez egy oktett stringet tudunk rendelni,
és fordítva. Bármely oktett stringhez létezik egy hozzá-
tartozó absztrakt érték.

Ezzel a tulajdonsággal a fogadó alkalmazás össze-
hasonlíthatja a fogadott oktett stringet egy megadott
oktett stringgel anélkül, hogy tudná az értéket, amihez
az valójában hozzárendelhetô.

A kulcsfontosságú különbség a két szabály között
az, hogy a CER a ’constructed’ alaknál határozatlan,
míg a DER határozott alakot használ. Emiatt a CER kó-
dolást olyan alkalmazásoknál használják, amelyeknek
nagy mennyiségû adatot kell továbbítani.

XML Encoding Rules (XER)
A XER kódolási szabály [1] lényege, hogy az ASN.1

értékeket XML nyelvre kódolja át. Az alapvetô ötlet,
hogy határoljuk az ASN.1 elemeket a következô XML
címkékkel: <MARK> … </MARK>.

Ez azt jelenti, hogy egy típus értékei a következô-
képpen kódolhatók:

PDU ::= SEQUENCE { komponens1 SEQUENCE OF T,

komponens2 U }

<KOMPONENS1>...</KOMPONENS1>

<KOMPONENS1>...</KOMPONENS1>

<KOMPONENS1>...</KOMPONENS1>

<KOMPONENS2>...</KOMPONENS2>

<KOMPONENS2>...</KOMPONENS2>

Az ASN.1 nyelv a protokolltervezésben

LIX. ÉVFOLYAM 2004/8 23

5. ábra A T mezô két lehetséges formátuma

6. ábra
Az L mezô

lehetséges formái

6. Az ASN.1 fordító

Általánosságban a fordító egy olyan számítási eszköz,
amely beolvas egy programot mely elsô nyelven, a for-
rásnyelven íródott, és lefordítja azt egy második nyelv-
re, amely a célnyelv, és tulajdonságait tekintve már
adott gép architektúrájának megfelelô ábrázolási mó-
dot követ. Természetesen minden egyes architektúrá-
hoz külön, az ahhoz készített fordító szükséges. A mi
esetünkben a forrásnyelv az ASN.1, a célnyelv pedig
lehet C, C++ és Java, a program pedig egy specifiká-
ció, mely néhány modulból épül fel.

Egy idealizált fordító négy rétegre bontható, melyek
mindegyike csak akkor mûködik, ha a fölötte lévô réteg
hibátlanul fejezte be mûködését. Az elemzési és lexikai
hibákat a forráskódban lévô meg nem engedett karak-
terek, vagy grammatikai struktúrák gerjesztik, míg a sze-
mantikai hibákat az inkoherens specifikációk idézik elô
(például egy INTEGER hozzárendelése BOOLEAN-
ként deklarált értékhez).

Amennyiben a kód nem tartalmaz sem szintaktikai,
sem szemantikai hibákat, a fordító általában a követke-
zô fájlokat generálja:

– egy fájlt a konkrét szintaxissal, amely az ASN.1
specifikációban szereplô adattípusok fordítása a meg-
felelô célnyelvre,

– egy vagy több fájlt, amely tartalmaz egy kódoló és
egy dekódoló eljárást az ASN.1 specifikációból minden
egyes típusra, amely megvalósítja a kódolási szabályo-
kat, valamint generálják az átviteli szintaxist.

7. A GTP és útprotokollja

Egy teljes ASN.1 specifikáció létrehozását a GTP
és annak útprotokollja segítségével próbálunk
meg bemutatni, azonban ehhez szükség van a
GTP protokoll, és az azt magában foglaló GPRS

rövid ismertetésére is. A specifikáció felé-
pítése során a kiindulópont a GPRS há-
lózat megismerése, ami után már fel tud-
juk építeni a függelékben található ASN.1
specifikációt.

A cikkünkben bemutatott példát úgy
próbáltuk meg kiválasztani, hogy minden-
képen egy viszonylag új technológiát vizs-
gáljunk meg és ez a mobil távközlés terü-
letén használatos rendszer legyen. Így
került a GPRS rendszerre és a GTP pro-
tokollra a választás.

Mivel a GPRS nemcsak a ma még jó-
val elterjedtebb GSM, hanem a közeljö-
vôben egyre inkább teret hódító EDGE
hálózatokon is használható, érdemes en-
nek fokozott figyelmet szentelnünk. Nap-
jainkban a legelterjedtebb alkalmazások

kapcsán is elôtérben van ez a szolgáltatás, hiszen
GPRS-t használhatunk WAP és Internet oldalak bön-
gészésekor, vagy MMS üzenetek küldése során. Ép-
pen ezért a GPRS mérföldkônek számít a GSM háló-
zatok fejlôdésében, a ma rendelkezésre álló hálózati
infrastruktúrán, – és ez az az ok, ami miatt ezzel a
rendszerrel és protokollal foglalkozunk.

Egy GPRS hálózatban több GSN található, ame-
lyek IP protokollon keresztül tartják egymással a kap-
csolatot. Ezek lehetnek GGSN-ek vagy SGSN-ek. Az
SGSN kommunikál a mobil készülékkel, a GGSN az át-
járó az Internetre. Így, amennyiben egy mobil készülék-
rôl például egy www. oldalt böngészünk, az adatok út-
vonala rendre a következô lesz:

MS ⇒ SGSN ⇒ GGSN ⇒ webszerver.

Ez a virtuális adatútvonal.
A GTP alagút [10] ebben a hálózatban tulajdonkép-

pen két GSN között található meg. A két GSN (általá-
ban a GGSN és az SGSN) egy virtuális kapcsolaton ke-
resztül, a GTP alagúton tartja egymással a kapcsola-
tot, amely a 8. ábrán is látható.

8. ábra A GTP és a GTP útprotokoll szerkezete

9. ábra
Adatcsomaghoz a GTP útprotokoll által hozzáadott fejrészek

HÍRADÁSTECHNIKA

24 LIX. ÉVFOLYAM 2004/8

7. ábra
A fordítás lépései, egy idealizált fordító felépítése

A GTP az adatcsomagokat a 9. ábrán látható mó-
don továbbítja, elôször egy GTP fejrészt tesz az adat
elé, majd ezt egy TCP/UDP [5], végül pedig egy IP [5]
fejrésszel egészíti ki. A másik oldalon rendre lebontja
ezeket a fejrészeket, és megkapja a szükséges adatot,
melyet tovább küldhet a mobil készülék vagy az Inter-
net irányába. Ezt a folyamatot végzi GTP útprotokoll,
melynek adatszerkezete a függelék részben az ASN.1
specifikációban található meg, ahol látható a fejrészek
elhelyezkedése, illetve az, amint az egyes fejrészek
után következô csomagrész újabb fejrészeket tartal-
maz, ahogy a GTP csomag egy TCP vagy egy UDP cso-
magot.

8. Összefoglalás

A formális leíró technikák meglehetôsen fontos szere-
pet töltenek be a protokoll-tervezésben. Ezért nagyon
fontos az, hogy biztosítsuk a gyors átjárhatóságot az
egyes FDT-k között. Itt kerül a képbe az ASN.1, amely
legfôbb tulajdonságának – a hardverfüggetlenségnek
– köszönhetôen tökéletesen alkalmas erre a feladatra.
Úgy is mondhatnánk, hogy az összekötô kapocs sze-
repét tölti be a formális technikák, az UML, az SDL és
a TTCN között.

Az ASN.1 segítségével teljes protokoll-specifikáció-
kat tervezhetünk és magas szintû alkalmazásspecifiká-
ciókat írhatunk le. Mindenképpen szükségünk lesz erre
a protokolltervezés egyes lépései között, azonban két
legfôbb tulajdonsága – olyan érthetô, mint amilyen ab-
sztrakt – megszabadít minket minden korláttól, mely
akadályozhatja tervezôi tevékenységünket.

Irodalom

[1] Olivier Dubuission:
ASN.1 – Communication between
heterogeneous systems
Morgan Kaufmann Publishers, 2000.

[2] Prof. John Larmouth:
ASN.1 Complete
Morgan Kaufmann Publishers, 1999.

[3] J. Ellsberger, D. Hogrefe, A. Sarma:
SDL Formal Object-oriented Languages for
Communicating Systems,
Prentice Hal Europe, 1997.

[4] OSI – A Model for
Computer Communications Standards
U. Black, Prentice-Hall, 1994.

[5] Andrew S. Tanenbaum:
Számítógép-hálózatok
Panem-Prentice Hall, 1999.

SERIES X: DATA NETWORKS AND
OPEN SYSTEM COMMUNICATIONS,
OSI networking and system aspects – Abstract
Syntax Notation One (ASN.1)

[6] Information technology –
Abstract Syntax Notation One (ASN.1):
Specification of basic notation
ITU-T, Rec. X.680, 07/2002.

[7] Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)
ITU-T, Rec. X.690, 06/1999.

[8] Information technology – ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)
ITU-T, Rec. X.691, 06/1999.

[9] Information technology – ASN.1 encoding rules:
XML Encoding Rules (XER)
ITU-T, Rec. X.693, 12/2001.

[10] Jyke Jokinen:
GPRS & UMTS Protocols: GTP details,
Tampere University of Technology,
Department of Information Technology,
Advanced Topics in Telecommunications, 2000.
www.cs.tut.fi/kurssit/8309700/reports/gtp-report.pdf

Függelék

A GTP útprotokoll ASN.1 specifikációja:

Module-packets DEFINITIONS
AUTOMATIC TAGS ::=
BEGIN

Ip ::= SEQUENCE {
ip-header SEQUENCE {
ip-version INTEGER,
ip-header-length INTEGER,
type-of-service SEQUENCE {

precedence BIT STRING,
delay BIT STRING,
throughput BIT STRING,
reliability BIT STRING,
unused BIT STRING

},
full-length INTEGER,
identification OCTET STRING,
unused BIT STRING,
dont-fragment BIT STRING,
more-fragment BIT STRING,
fragment-offset BIT STRING,

life-time INTEGER,
protocol-type BIT STRING,
header-checksum BIT STRING,

source-address OCTET STRING,
destination-address OCTET STRING,

options OCTET STRING
},

Az ASN.1 nyelv a protokolltervezésben

LIX. ÉVFOLYAM 2004/8 25

ip-packet SEQUENCE {
}

}

Tcp ::= SEQUENCE {
tcp-header SEQUENCE {
source-port OCTET STRING,
destination-port OCTET STRING,
sequence-number OCTET STRING,
acknowledgement-number OCTET

STRING,
tcp-header-length INTEGER,
unused BIT STRING,
urg-bit BIT STRING,
ack-bit BIT STRING,
rst-bit BIT STRING,
psh-bit BIT STRING,
syn-bit BIT STRING,
fin-bit BIT STRING,
window-size INTEGER,
checksum OCTET STRING,
urgent OCTET STRING,

options OCTET STRING
},

tcp-packet SEQUENCE {
ip-packet Ip

}
}

Udp ::= SEQUENCE {
udp-header SEQUENCE {

source-port OCTET STRING,
destination-port OCTET STRING,
udp-segment-length INTEGER,
udp-checksum OCTET STRING
},
udp-packet SEQUENCE {

ip-packet Ip
}

}

END

Protocol DEFINITIONS AUTOMATIC
TAGS ::=

BEGIN
IMPORTS Ip, Tcp, Udp
FROM Module-packets;

PDU ::= CHOICE {
gtp-header SEQUENCE {
gtp-version INTEGER

DEFAULT 0,
pt INTEGER

DEFAULT 1,
spare BIT STRING

DEFAULT
‘111’B,

snn INTEGER,
message-type OCTET

STRING,
length OCTET

STRING,
sequence-number OCTET

STRING,
flow-label OCTET STRING,
sndcp-n-pdullc-number OCTET

STRING,
spare1 BIT STRING

DEFAULT ‘11111111’B,
spare2 BIT STRING

DEFAULT ‘11111111’B,
spare3 BIT STRING

DEFAULT ‘11111111’B,
tid OCTET STRING}

},
gtp-packet CHOICE {
tcp-packet Tcp,
udp-packet Udp

}
}

END

HÍRADÁSTECHNIKA

26 LIX. ÉVFOLYAM 2004/8

