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One of the most important research topics is the investigation of (short) impulse propagation in waveguides. The known solu-
tions are based upon the well-known monochromatic approaches, examining the different frequencies separately or building
the model and the theory on a fundamentally monochromatic starting point (e.g. permittivity tensor, which is defined originally
by assuming an type solution form). In this paper a completely new theoretical model and solving method will be presented
for a rectangular waveguide filled by vacuum, excited by an arbitrarily formed electromagnetic signal (Dirac or real, even

short impulse).

This method avoids the application of the former as-
sumptions regarding the sinusoidal waveforms.

The obtained closed-formed solution leads back to
the former ones known for monochromatic excitation,
by using a sinusoidal excitation with a given frequency,
but obviously the new formula results a general solu-
tion of the problem.

Introduction

The model, in which the new theoretical method will be
presented, is a rectangular waveguide filled by vacuum
and bordered by perfect conductor walls.

Fig.1. The structure of the model
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The generally directed exciting current density is
Ji=Jyi+dy,jHd,k
|| =8(1)-8(x)-B,(»)- B:(2)

where B(x) and B,(2) are envelope functions con-
taining the boundary conditions

(1)

Bi(0) = Bi(@) =0 and B,(0) = By(b) =0 (2

So the current density is (3)
J, =|jl|sinBzT+|jl|cosB cosoc]_'+|jl|cos[5 sina. k

Further — without any theoretical restriction — let the
following, sufficiently general form of the excitation be
applied (4):
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The new solving method

The theoretical basis of the solving method can be
found in [1, 2] for transient plane waves.

The equations to be solved are Maxwell’ equations
(3, 8]
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Let the retarded potential be introduced on the well
known way

VxA=H
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E+pu,—=-V
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The Lorenz-condition is valid, as usual

(VZ+508—W)=0 (7)
ot

(6)
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So, the equation to be solved is

_ 924 _
VZA —SO,LLO?:—J] (8)
As the excitation is a generally formed signal with
exact starting point according to time and space, the
Laplace-transformation can be applied, as

et s

r ety

ye—=—u

z e
f(t,x,y,z)%F(s,p,u,l)

Because of the presence of derivative terms, initial
values according to all coordinates will appear. Usually
these initial values contain information regarding the
energetic state of the medium. However, in this case
the medium is considerable to be free of energy before
the switching on of the excitation. Therefore in the fur-
ther all the initial values have to be taken into account
as 0.

The transformed equations to be solved are:

Hx(s,p,u,l)zuAZ(s,p,u,l)—lAy(s,p,u,l)
H},(S,pﬂflal): _p Az (S9p5u’l)

H_(s, p,u,l)=p A,(s, p,u,l)

further

11
Ex(s,p,u,l)=;;[1ﬂu/1\ (s, pou, 1)+ pl A.(s, pou1)] 1)
0

E, (s, pu,0)= ei %[usz (s, pou,) )+ ul A (s, p,u, l)]—/.i0 s4, (s, pou,l)
0

(10)
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Fig.2. The envelope functions

The Laplace-transformed form of the exciting cur-
rent density is

Jl(s,p,u,l)z (12)

- JﬁJ ()3 (x)B,(3)B,(z) e e ™ e Fdrdxdydz
0 =1-1-B,(u)B, (/)

It is very important to choose B; and B, functions
suitably. These envelope functions contain the bound-
ary conditions resulted from the geometrical structure
of the model. This can be seen in Fig.2.

The boundary conditions to be validated are

Bi(0) = Bi(a) = By(0) = By(b) =0 (13)

As it is usual [3], the envelope functions By and B,
can be extended periodically, and it is possible to
describe them by Fourier-series:

B] (y)= zcm . eJm;y
m=0 (14)

T
n—y

1 —jm
Co=gg JBO) e dy

and _ -
B,E)=XcC,-¢""
n=0
1 b —jniz (15)
Cn=g_‘[82(z)-e b dz

where C,, and C, are Fourier-coefficients, a and b
are geometrical parameters of the waveguide, mand n

re in r
areintegers . _ 0.+1.42,..

n=0,t1,£2,...
The Laplace-transformed forms of (19) and (20) are

B)=Y — =

=Y — jm—

(16)
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The poles according to p can be

determined from
(18)

Investigating the poles according to
u and /it becomes obvious, that only
the poles originating from the excitation
will yield terms different from zero in the
amplitudes. Executing the well known

plrul+17 —g st =0

nY

steps of the inverse Laplace-transforma-
tion on the common way and using the

(19)
substitution, the spectral forms of the

filed components depending on the
spatial variables are:

S=jw
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It can be seen, that one term in the field components propagates forward, the other propagates backward,
considering the location of the excitation as a starting point (x = 0) in the assumed infinitely long wave-guide.
The limiting wave-length (and the limiting frequency, respectively) can be obtained from (20) and (21) as

Suwz_m£2_n£2:0 S — 22
oo a b m (mb)z+(na)2 (22)

By the application of the formal inverse Fourier-transformation, the complete time-space dependent, exact
form of the propagating electric and magnetic field-components can be obtained as

PC,C, .
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where

T, =wt+k (0)x T =wt—k (0)x

Numerical results

As a first application of the obtained closed-formed
solution, let an Earth-ionosphere wave-guide model be
calculated.
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Fig.3. Observed dynamic spectra and time functions
for two magnetic field-components
(Marion Island, 2001.04.22. 02:30:07)

In the model, let b = o be assumed (wave propaga-
tion between two infinite perfect conductor plain walls),
the excitation is in the x = 0 plane. It is shown in Fig.4.

Fig.3. shows observed dynamic spectra detected
on the terrestrial surface, propagated in the Earth-
ionosphere layer. Many papers investigate the propa-
gation of these signals, and it is known that the form of
the dynamic spectrum is caused by the presence of the
Earth-ionosphere waveguide [4, 5, 6, and 7].

Fig.4/a.
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Fig.4/b. The model of the Earth-ionosphere wave-guide

But the theoretical description of the problem is
based on the monochromatic wave-propagation of gui-
ded waves [8].

In the model-calculation the height of the bottom of
the ionosphere is at 85 km, 2000 km is the traveled
propagation path, 1000 m is the height of the antenna
(location of detection). The excitation is a Dirac and all
the Fourier coefficients are taken into consideration
with 1 value, a = 45°, and m = 0,...,5 modes are taken

into consideration (but all these parameters are flexible
and modifiable).

The calculated time functions and dynamic spectra
of H, and H, at the P point is shown in Fig.5.
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Fig.5. Calculated time functions and dynamic
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spectra of field components for Dirac excitation

In the comparison of Fig.3. and 5. some simi-
larities are recognizable. The real impulse be-
havior can well explain the parallel traces in the
spectra. The number of the branches depends
on the number of Fourier-coefficients (modes) ta-
ken into consideration. Moreover, the distance
among the branches depends on the height of
the waveguide, or with other words, the thickness

Ny x(i

of the troposphere, the actual height of the bot-
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tom of the ionosphere (the height of the D layer).
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Conclusions

In this paper a closed-formed solution is presented for
guided waves excited by real transient signals.

The presented solving method is general and fully
analytical. The excitation is a real arbitrarily shaped tran-
sient signal. Applying the presented solving method for
Dirac excitation, the transfer function of the waveguide
can be described. This result opens the way for investi-
gation of real (short) impulse propagation in waveguides
and the transient propagation phenomena. The geo-
metrical structure can be developed further.

The closed-formed solution is well applicable for
computers in order to calculate numerical results of the
analytical solutions.

As a possible application of the new result in a spe-
cial case, a geophysical example was presented. From
the comparison of Fig.3. and Fig.5. it can be seen, that
the model describes well some observed phenomena.
By the application of this solution it became possible to
monitor the bottom of the ionosphere continuously. It is
not necessary to use the averaging of many observed
spherics for the estimation of the height of the D layer,
because the more exact new model makes it possible
to use each individual observed spheric separately.

Moreover, the distance of the lightning source can
be estimated from the dispersion fitting of the measured
and calculated signals. The direction of incidence is well
determinable from the ratio of H, and H, components.
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