
Bevezetés

A mobilitás fontosságát a mai rohanó élet során nem
lehet eléggé hangsúlyozni. Az élet minden területén
találkozhatunk vele mikor laptopot, mobiltelefont, PDA-
kat vagy egyéb hasonló eszközöket használunk. Ter-
mészetesen nem elég magukat az eszközöket mobilis-
sá tenni, hanem sok esetben biztosítani kell ezen esz-
közök számára a kommunikáció lehetôségét is. Ezzel
eljutottunk a vezeték nélküli kommunikáció fontosságá-
hoz.

A vezeték nélküli kapcsolatoknak igen sok elônye
van. Sok esetben van szükség nagyobb távolságot át-
hidaló kapcsolatra olyan helyeken, ahol a kábelépítés
különbözô okokból nem megvalósítható, vagy komoly
problémákba ütközne. Ilyen esetekben fix telepítésû
vezeték nélküli eszközök használatára van szükség. A
már említett mobil eszközökhöz azonban olyan kom-
munikációs technológiák alkalmazására van szükség,
amelyek alkalmasak mind a vezeték nélküli átvitel, mind
pedig a mozgó terminálok okozta problémák leküzdé-
sére.

A vezeték nélküli kommunikáció legnagyobb prob-
lémája az átviteli közeg használatából adódó zavarha-
tóság. Zavarforrásnak tekinthetünk az átviteli közeg-
ben lévô minden olyan jelet, melynek frekvenciatarto-
mánya, irányítottsága stb. olyan, ami rendszerünk jeleit
módosítani képes. 

Ezek a jelek származhatnak természetes források-
ból, más elektromos eszközökbôl; sôt, ilyen zavarjel le-
het egy másik vezeték nélküli rendszer is. Az alkalma-
zott modulációs eljárások és technológiák egyik legfon-
tosabb jellemzôje az ezen zavarokkal szembeni ellenál-
ló képessége.

Az IEEE 802.11 az egyik leginkább elterjedt veze-
téknélküli hálózati technológiákat definiáló szabvány-
család. Nézzük most meg, az alap szabvány által defi-
niált fizikai réteget, valamint a használt rádiós csator-
nát.

Az IEEE 802.11 fizikai rétege

Az 802.11-es szabványt elôször 1997 szeptemberé-
ben ismertette az IEEE. Tudnunk kell, hogy a szab-
ványcsoport több változtatáson ment át azóta, mely
módosításokat különbözô betûkkel jelölik (pl. 802.11a
– 5GHz, OFDM; 802.11b – 2.4GHz, CCK kiegészítés;
802.11g, 2.4GHz, OFDM és CCK kompatíbilis).

A szabvány elôször a 2.4GHz-es frekvenciára terve-
zett WLAN eszközök mûködési paramétereit definiálta.
A 2.4GHz-es ISM sáv 83.5MHz széles (2.4-2.4835GHz).
Ezen frekvenciasávot a szabvány 13 egymást átfedô,
egyenként 22MHz sávszélességû csatornára osztja, me-
lyek középfrekvenciájának távolsága egyenként 5MHz.
Ennek megfelelôen e tartományban 3 át nem lapolódó
csatornát biztosíthatunk. Párhuzamos rendszerek ter-
vezésekor használhatunk átlapolódó csatornákat is,
azonban számolnunk kell azzal, hogy így a két rend-
szer interferenciájából adódó zavar önmagában csök-
kentheti az elérhetô adatátviteli sebességet.

Mivel a definiált frekvenciasáv ISM sáv, ezért a szab-
vány spektrumkiterjesztést (spreed spectrum) definiál a
rendszer zavarhatóságának és a rendszer által keltett
zavarok csökkentésére. A szabvány lehetôvé teszi mind
a direkt szekvenciális (DSSS), mind pedig a frekvencia-
ugratásos (FHSS) sávkiterjesztést is.

Az IEEE 802.11 által definiált FHSS eljárást alkal-
mazó eszközök GFSK modulációt alkalmaznak. Az így
elérhetô adatátviteli sebességek 1MB/s (2GFSK) és 2
MB/s (4GFSK). Mára a kereskedelemben kapható esz-
közök között a DSSS eljárást alkalmazó eszközök tel-
jes mértékben kiszorították az FHSS eljárást, a tovább-
fejlesztések is a DSSS vonalon folytatódtak.

A direkt szekvenciális spektrumszórás esetében 11
chipes (a szakirodalomban a szórókód 1 bitjét nevezik
chipnek) barker kódot definiáltak spektrum-kiterjesztô
kódként valamennyi üzemmódban, így a chipsebesség
11MBit/s lesz minden esetben. Az alkalmazott modulá-
ciók által elérhetô adatátviteli sebesség az FHSS rend-
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szerekhez hasonlóan itt is 1 és 2MB/s lett. Ennek biz-
tosításához DBPSK és DQPSK modulációt írtak elô.

A rendszerek mindkét esetben képesek az adatát-
viteli üzemmódok között automatán váltani, így zajo-
sabb környezetben az átvitel stabilitása érdekében
automatikusan kisebb lesz az elérhetô adatátviteli se-
besség. A fejléc legfontosabb részei definíciószerûen
csak a legnagyobb zavartûrésû üzemmóddal továbbít-
hatóak (1MB/s, DBPSK), ezzel is csökkentve a csomag
meghibásodásának valószínûségét. Természetesen ez
magával vonja azt, hogy a rendszernek egyetlen rádi-
ós csomag továbbítása közben is képesnek kell lennie
az üzemmód változtatására!

A technológia és a követelmények szigorodásának
következtében a mobil hálózatok viszonylag hamar ki-
nôtték a rendszerek által biztosított kereteket – legin-
kább a korlátozott adatátviteli sebességet – így újabb
fejlesztésekre volt szükség a minôség javításához. Na-
gyobb adatsebességû eljárás konstruálására (802.11
HR) több próbálkozás is történt.

Kísérleteztek a BCPPM (Barker Code Pulse Posi-
tion Modulation), MBOK (M-ary Bi-Orthogonal Keying),
OFDM (Orthogonal Frequency Division Multiplex),
OCDM (Orthogonal Code Division Multiplex) eljárások-
kal is, azonban végül a CCK (Complementary Code
Keying) eljárás váltotta be a hozzá fûzött reményeket.

Komplementer kódok

A CCK eljárás alapjait a komplementer kódok elméleté-
ben kell keresnünk. A bináris komplementer kódok egy
sokkal általánosabb kódhalmazból, a többfázisú kódok-
ból származtathatóak. (Az IEEE802.11 CCK eljárása
ezeket a többfázisú kódokat alkalmazza.)

A komplementer kódokat elôször infravörös spektro-
metriában alkalmazták, de jó tulajdonságaik miatt radar
applikációkban és OFDM eljárásokban is elterjedtek.
Egyetlen alkalmazásban sem használták a komplemen-
ter kódokat olyan módon, ahogyan a 802.11 CCK eljá-
rásában. Definíció szerint a komplementer kódok olyan
kódpárokat jelentenek, melyek egyikében lévô hason-
ló bitpárok száma (bármilyen közzel véve) megegyezik a
másik kódban lévô nem hasonló bitpárok számával. 

Erre láthatunk egy egyszerû példát a fenti ábrán.
Ebben a példában az elsô sorozatban 4 hasonló bitpár

van, míg a második sorozatban 4 nem hasonló bitpárt
fedezhetünk fel. Táblázatba foglalva az egyes hason-
ló bitpárok számát különbözô közzel véve a következô
eredményt kapnánk:

Ebbôl tehát látható, hogy a komplementer kódok-
ban egy erôs szimmetria rejlik. Ennek nagy elônye, hogy
a periódikus autókorrelációs vektora (kódszó és eltolt
kódszó szorzata) ezen vektoroknak mindenhol nulla, ki-
véve a nulla eltolást.

Az elmondottakat matematikailag a következôkép-
pen írhatjuk le:

ahol n a kódszó hossza, a és b pedig a két komple-
menter szekvencia.

Ideális esetrôl akkor beszélhetünk, ha

cj + dj = 0,   j = 0   és   c0 + d0 = 2n.

Az ideális esetet általában nehéz megvalósítani, de
jó kódokról beszélhetünk, ha csupán egy csúcsértéke
van az autókorrelációs vektornak több kis csúccsal.

A fent említett két kódsorozatot vizsgálva megálla-
píthatjuk, hogy ezek tökéletes komplementer kódok:
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Többfázisú 
komplementer kódok

A többfázisú komplementer kódok olyan szekvenciákat
tartalmaznak, melyek szintén komplementer tulajdon-
ságokkal rendelkeznek, azonban elemeinek fázis para-
méterei is vannak. 

A 802.11b által definiált kódkészlet komplex komple-
menter kódokat tartalmaz, tehát az elemei komplex
számok.

A 802.11b szabvány, 
CCK kiegészítés

Az átviteli sebesség növelésére tett kísérletek eredmé-
nyeképpen az IEEE 1999 szeptemberében bejelentet-
te a 802.11 szabvány ’b’ kiegészítését, melyben a már
meglévô adatátviteli üzemmódokat további két üzem-
móddal egészítették ki, így az elérhetô maximális adat-
átviteli sebesség 11Mb/s-ra nôtt. A két új üzemmódban
CCK eljárást írtak elô, melyekben ugyan azt a chipse-
bességet és spektrumszélességet használja a rend-
szer, mint a barker kóddal történô spektrum-kiterjesztés
esetén.

A CCK eljárás egy 64 elemû kódmodulációs eljárás-
nak is tekinthetô, melyben a spektrum-kiterjesztô kód
egy 64 elemû közel ortogonális vektorhalmazból kerül
kiválasztásra. A kiválasztott 8 bit hosszúságú komplex
(QPSK) vektor ennek megfelelôen 6 bit információ átvi-
telére alkalmas. További 2 bit információ átvitelére ad
lehetôséget a moduláció, mellyel elôállítható a QPSK
szimbólum. 

Ennek megfelelôen egy CCK adó egység elvi felépí-
tése a következôképpen vázolható:

CCK moduláció, adó áramkör elvi felépítése

Az így kialakított szimbólum azonban mindössze 8
chip hosszúságú, így nem használja ki teljesen a 802.11
szabvány által definiált rádiós csatornát, ehhez 11 chip
hosszúságú spektrum-kiterjesztô kódra lenne szükség.
Ennek eléréséhez a szimbólumsebesség 1.375-szörös
növelésére van szükség. A rendszerrel elérhetô adatát-
viteli sebesség elvi maximuma tehát 11Mbit/s lett, mi-
közben a definiált 22MHz szélességû átviteli csatornát
megfelelôen kihasználjuk.

Az eljárást leíró formula az alábbiak szerint alakul:

A formulából látható, hogy az egyes chipeket 4 kü-
lönbözô fázistényezô határozza meg. Az elsô minde-
gyik chipet modulálja, ennek megfelelôen ez definiálja
a QPSK forgatását az egész kódvektornak (ezt a fázis-
tényezôt határozza meg az adatból leválasztott két
bit). A második tényezô minden páratlan chipet, a har-
madik minden páratlan chippárt, míg a negyedik az
elsô négy chipet modulálja.

A megfelelô fázis paraméterek kiválasztása a 8 adat-
bitbôl a következôképpen történik:

Nézzünk most is egy példát! 
Tegyük fel, hogy az átvinni kívánt adatbájtunk

d[7…0]=1,0,1,1,0,1,0,1

Ezzel a fázisértékek:

d1,d0 = 0,1   tehát    ϕ1 = π;
d3,d2 = 0,1   tehát    ϕ2 = π;
d5,d4 = 1,1   tehát    ϕ3 = -π/2;
d7,d6 = 1,0   tehát    ϕ4 = π/2;

Ezeket a fázisértékeket a formulába helyettesítve a
következô kódszót kapjuk:

A 802.11b kiegészítés két adatátviteli sebességû
üzemmóddal bôvíti a szabványt. Az 5.5Mbit/s-ot az elô-
zôvel megegyezô CCK eljárással éri el. A kisebb adat-
átviteli sebességet úgy érhetjük el, ha a már definiált
CCK szimbólummal kevesebb információs bitet viszünk
át. Ennek megvalósítását a komplex kódválasztó limi-
tálásával érhetjük el. A 64 kódszóból megfelelô módon
kiválasztva 4-et a szórókóddal átvihetô információ 2
bitre csökken, azaz a teljes szimbólum csupán 4 bit in-
formációt fog hordozni, tehát az adatátviteli sebesség
a felére csökken.

A CCK vevô áramkör felépítése egy korrelációs de-
tektor alkalmazását igényli, azaz egyfajta Rake vevôt
megvalósítva tudjuk a legegyszerûbben dekódolni a
vett jelet. Az így kialakított áramkör blokkvázlata a kö-
vetkezô oldali ábrán látható.

A vett jel egy illesztett FIR szûrôn átengedve egy
FWT (Fast Walsh Transform) egységbe kerül. Ez az egy-
ség azért használható jól, mert ezekben kódokban
WALSH tipusú struktúra rejlik. (Bár lehetséges lenne
több komplementer kódszót is találni ezzel a 8 chippel,
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de ezeket nem lehetne FWT-vel dekódolni.) Az FWT
egység két fô részre bontható funkció szerint. Az elsô
részben annyi korrelátor kap helyet, ahány lehetséges
szórókódot alkalmazhatunk, míg a második rész egy
BP (Biggest Picker) áramköri egység, mely a bemene-
tei közül a kiválasztja a legnagyobbat. 

Ennek megfelelôen megérthetô az egység mûködé-
se is. A bejövô szimbólumot minden korrelátor megkap-
ja egyidejûleg, így mindegyik kimenetén megjelenik egy
mennyiség, mely arra utal, hogy az adott korrelátor által
vizsgált szórókód mennyire hasonlít a szimbólumnál
alkalmazotthoz. A BP áramkör ezek közül kiválasztja a
legnagyobat, mivel ezek alapján ennek a szórókód-
nak volt a legnagyobb valószínûsége. Az így visszaál-
lított QPSK szimbólum fázisának meghatározásával
elôállíthatjuk az adóban leválasztott 2 bitet, azaz visz-
szaállítható az eredeti adatfolyam.

Összefoglalás

Megállapítható tehát, hogy a CCK eljárás lényegében
véve egy MOK (M-ary Orthogonal Keying) szerû modu-
láció, melyben a használt kódok komplex szimbólum
struktúrát alkotnak. A CCK használatával a 802.11 által
definiált vezetéknélküli rendszer bôvülhetett két na-
gyobb adatátviteli sebességû üzemmóddal, melyek a
már definiált csatornán képesek továbbra is üzemelni,
tehát a rendszer visszafelé kompatíbilis maradt.

Végezetül nézzünk meg egy Lucent Silver WLAN
kártyával vizsgált adatátvitelt, melybôl kiderül, hogy a
CCK-t használó két újabb üzemmód valóban jelentôs
sebességnövekedést eredményezett. Észrevehetô azon-
ban, hogy mind az 5.5 Mbit/s, mind pedig a 11Mbit/s
üzemmód adatátviteli sebessége jelentôsen elmarad az
elméleti határértéktôl. Ennek az oka a protokollrend-
szerben rejlik. Mivel az eszközöket visszafelé kompati-
bilisen alakították ki, így sajnálatos módon az új üzem-
módok biztosította gyors adatátvitelt csak a csomag
tényleges adatrészénél lehet kihasználni, így hatásos-
sága csökken.

Természetesen – ahogy az a grafikonon mutatott
mérési eredményekbôl is látszik – a nagyobb adat-
átviteli sebességet biztosító üzemmódok és moduláci-
ós eljárások jobb jel-zaj viszonyt igényelnek a hibamen-
tes demodulációhoz.
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