
Bevezetés

A kutatás és a tudományok területén egyre nagyobb
szükség van olyan számítógépes háttérre, amely támo-
gatja a nagy számításigényû, nagy pontosságú alka-
lmazások (HPC – High Performance Computing) futta-
tását. Ezekhez a feltételekhez a legalkalmasabb kör-
nyezetet az igen drága, azonban gyors és megbízha-
tó, több processzoros, nagy memóriával és háttértárral
rendelkezô szuperszámítógépek nyújtják. Többnyire az
egyetemek, kutatóközpontok nem engedhetik meg ma-
guknak, hogy saját célra ilyen eszközt vásároljanak,
ezért sorba kell állniuk, hogy használhassák a világ va-
lamelyik szuperszámítógép-központjánál rendelkezés-
re álló kapacitást. A helyzet azonban enyhült azóta,
hogy Magyarországon a Nemzeti Információs Infrastruk-
túra Fejlesztési Iroda Szuperszámítógép Központjában
[1] 2001-ben üzembehelyeztek egy mára, 196 procesz-
szorosra bôvült Sun szuperszámítógépet.

Sajnos ennek ellenére is fennállnak a fent említett
nehézségek, amelyeknek a kiküszöbölésére kidolgoz-
tak egy megoldást, melyben olcsó, egy-két processzo-
ros, kis számítási kapacitással rendelkezô személyi
számítógépeket kötnek össze egy hálózattal (Work-
station Cluster), hogy az együttes számítási teljesítmé-
nyük elég nagy legyen ahhoz, hogy megközelítsék a
szuperszámítógépekét. Ez a megoldás két problémát
vet fel:

• Hogyan lehet elérni a számítógépek és a rajtuk futó
folyamatok (processzek) összehangolt mûködését?

• A személyi számítógépek olcsóságukból eredôen
megbízhatatlanok lehetnek, vagyis a meghibáso-
dásig tartó idô várhatóértéke sokkal kisebb, mint a
szuperszámítógépeké (MTBF – Mean Time Between
Failures).
Az 1990-es évek elején az elsô problémakör meg-

oldására hozta létre az MPI Forum több mint 40 szer-
vezet részvételével az MPI szabványt [2, 3]. Az üzenet-

továbbító illesztô felület (MPI – Message Passing Inter-
face) célja az, hogy a gyakorlatban is alkalmazható,
hordozható, hatékony és rugalmas felületet biztosítson
üzenettovábbítás céljából. Ennek az interfésznek a se-
gítségével lehet megoldani több számítógépen futó
folyamatoknak a hatékony kommunikációját. A szab-
vány által definiált MPI a viszonyréteget és a megje-
lenítési réteget foglalja el az ISO OSI hétrétegû modell-
jében [4, 5]. Olyan értéknövelt szolgáltatásokat nyújt,
mint a folyamatok szinkronizálása, a feladat szétosz-
tás, másrészt foglalkozik a továbbítandó információk
szintaktikájával és szemantikájával, amivel az adatáb-
rázolás különbözôségeibôl eredô problémákat kiküszö-
böli a heterogén rendszerekben (SGI IRIX, DEC Alpha
stb.).

A második probléma megszüntetésére különbözô
hibadetektáló és elhárító technikák jelentek meg az
évek során, melyeknek az elôbb ismertetett MPI szab-
ványon alapuló két eltérô gyakorlati megvalósítását sze-
retném bemutatni.

A hibadetektáló
és elhárító technikák

A következô pontban leírt hibatûrô rendszerek mûkö-
désének megértéséhez néhány alapfogalmat tisztázni
kell. A cikkben MPI alkalmazásnak nevezzük a számító-
gépfürtön futó, nagy számítási kapacitást igénylô prog-
ramot. Az MPI alkalmazás több folyamatból áll, melyek
mindegyike ideális esetben egy külön processzoron
fut. Ezek a folyamatok egymásnak üzeneteket – pél-
dául kiindulási adatokat, eredményeket – küldve kom-
munikálnak, hogy az egész alkalmazás sikeresen befe-
jezze a munkát.

A hibadetektáló és elhárító technikákat három fon-
tos paraméter különbözteti meg: az átlátszóság (trans-
parency), az ellenôrzôpont koordináció (checkpoint coor-

LIX. ÉVFOLYAM 2004/3 15

Folyamatok hibatoleráns futtatása
számítógépfürtön

KATONA ZOLTÁN

Budapesti Mûszaki és Gazdaságtudományi Egyetem, Szélessávú Hírközlés és Villamosságtan Tanszék

kz340@hszk.bme.hu

Kulcsszavak: nagy kapacitást igénylô programok, MPI, együttmûködési hibák

A cikkben két hibatûrô rendszert mutatok be, melyet az egy-két processzoros személyi számítógépekbôl álló számítógép-

fürtökre dolgoztak ki. Jelen esetben hiba alatt az olyan véletlenül bekövetkezô eseményeket értjük, melyek miatt egy, vagy

több számítógép többé nem része a számítógépfürtnek. A kiváltó ok lehet többek között a merevlemez, memória, alaplap, vagy

a processzor meghibásodása, áramszünet, de akár az operációs rendszer, vagy bármelyik létfontosságú szoftver lefagyása

is. A hibatûrô rendszerek legfontosabb feladata, hogy a több hétig, hónapig futó nagy számításigényû alkalmazást ne kelljen

újraindítani egy ilyen nem várt esemény miatt. Biztosítaniuk kell az alkalmazás zavartalan futását, amelyet a hibák detektálá-

sával, illetve ezek kiküszöbölésével érhetnek el.

dination) és az üzenetek naplózása (message logging)
[6]. Ahhoz, hogy az átlátszóság teljesüljön, az üzenet-
továbbító alkalmazásnak képesnek kell lennie mind
futási idôben az automatikus hibadetektálásra és javí-
tásra, mind a hibajavítási folyamatba becsúszó hibáról
értesítést adni a programozónak, felhasználónak. Az
ellenôrzôpont-állomány (checkpoint image) nem más,
mint egy, a folyamat futása során keletkezô részered-
ményeket tároló állomány. Ha a számítógép, amelyen a
folyamat eddig futott, hiba következtében kiesik a szá-
mítógépfürtbôl, akkor a hibatûrô rendszer ezt a folya-
matot egy olyan gépre ütemezi, amely továbbra is a fürt
tagja. Amennyiben nem készült ellenôrzôpont-állomány
a hiba miatt kiesett folyamatról, akkor az újraütemezés
során elölrôl kell kezdenie a számításokat, ellenkezô
esetben azonban a részeredmények segítségével a
legutolsó közbülsô állapotból folytathatja a feldolgo-
zást.

Az ellenôrzôpont koordinációnak két fontos típusa
van. A koordinált, illetve a nem koordinált változat. A
koordinált esetben, ahogy az 1. ábra is mutatja, min-
den folyamatot szinkronizálni kell, vagyis be kell szün-
tetniük a hálózati kommunikációt, hogy ne vesszen el
információ az ellenôrzôpont-állományok készítésekor.
Amennyiben egy folyamatot újra kell indítani, mert kie-
sett az a számítógép, amelyen eddig futott, akkor mind-
egyik folyamat újraindul a legfrissebb ellenôrzôpontról.
Sajnos ezek a tulajdonságok okozzák, hogy ez a mód-
szer nem skálázható, mivel nem lehet csak a kiesett fo-
lyamatokat újraütemezni, hanem mindegyiket újra kell
indítani az utolsó ellenôrzôpontról.

Ez nagyban növeli a rendszer sérülékenységét, hi-
szen ha nem túl sûrûn készítünk ellenôrzôpont-állo-
mányokat, akkor értékes processzor idôk veszhetnek
el hiba esetén, akár csak egy gép kiesésekor is, mivel
így mindegyik számítógép munkája elvész. Ha sûrûb-
ben készítünk ellenôrzôpont-állományokat, akkor ez ke-
vésbé hangsúlyos, eltekintve az ehhez szükséges több-
let idôtôl.

A nem koordinált esetben egymástól függetlenül,
szinkronizálás nélkül, eltérô idôpontban készíthetô mind-

egyik folyamatról ellenôrzôpont-állomány, így a rend-
szer skálázható, vagyis elegendô csak a kiesett folya-
matokat újraütemezni. Nem koordinált esetben a folya-
matok nem szüntetik be az ellenôrzôpont-állományok
elkészítésekor a hálózati kommunikációt.

Ez azt jelenti, hogy a hálózaton levô üzeneteket
naplózni kell, mivel az ellenôrzôpont-állományok nem
hordoznak semmiféle információt ezekrôl. Vagyis, ha
egy folyamat üzenetet küld egy másiknak – például
egy kiindulási adatot – és a címzett kiesik, nem kapja
meg az üzenetet, akkor az újraütemezett folyamat vár-
ni fogja az üzenetet, de a feladó abban a hitben él,
hogy a címzett már megkapta. Ez végsô soron az egész
alkalmazás fennakadásához vezethet. A 2. ábra a nem
koordinált ellenôrzôpont-állomány készítésre mutat egy
példát.

Ha a hibatûrô rendszer nem készít ellenôrzôpont-
állományokat, akkor a rendszer csak a kommunikációs
naplókra hagyatkozhat a kiesett folyamatok újraüteme-
zésekor, vagyis a folyamatokat nem lehet részeredmé-
nyek segítségével egy közbülsô állapotból újraindítani.
Az egész alkalmazást a számítás legelejétôl újra kell
indítani. Ebben az esetben a kommunikációs naplók-
nak az a haszna, hogy a folyamatoknak nem kell vár-
niuk az üzenetekre, mert az a kiesés pillanatáig rendel-
kezésre áll.

Az üzenetek naplózása is többféle lehet. Létezik
pesszimista és optimista naplózás. Pesszimista eset-
ben megbízható adattároló eszközre mentik az üze-
neteket, amelyeknek nagy az MTBF-je, ezért igen kicsi
valószínûséggel vesznek el errôl adatok. Optimista
esetben nem megbízható adattárolóra mentik az üzene-
teket.

Amennyiben egy számítógép tönkremegy, akkor a
folyamatot más számítógépek naplóinak megfelelôen
indítják újra, viszont ha egynél több számítógép hibá-
sodik meg, akkor az utolsó koherens ellenôrzôpontról
történik a folyamat újraindítás, mivel ha rosszul van meg-
tervezve a rendszer, akkor a kiesett gépek közötti kom-
munikáció is megszakad, amit csak úgy lehet kiküszö-
bölni, hogy a folyamatokat a koherens ellenôrzôpon-
tokról indítjuk újra.

HÍRADÁSTECHNIKA

16 LIX. ÉVFOLYAM 2004/3

1. ábra
Koordinált ellenôrzôpont-állomány készítés

2. ábra
Nem koordinált ellenôrzôpont-állomány készítés

Hibatûrô megoldások,
elônyeik és hátrányaik

Az alapok tisztázása után rátérek néhány gyakorlati
példa részletezésére. Az elsô hibatûrô rendszer, ame-
lyet bemutatok az MPICH-V [6], (Cluster&GRID group,
Laboratoire de Recherche en Informatique, University
of Paris South). Ez a hibatûrô rendszer azt feltételezi,
hogy az MPI alkalmazás futása során keletkezô hibák
a számítógépek meghibásodása miatt keletkeznek.
Ennek az elgondolásnak az architektúrája több elem-
bôl áll. Megbízható csatornamemóriák (Channel Me-
mory), megbízható ellenôrzôpont szerverek (Checkpoint
Server) és egy irányító (Dispatcher) alkotják a csomó-
pontokkal (Node) együtt a rendszert, ahogyan a 3. ábra
is mutatja.

A csatornamemóriák feladata, hogy naplózzák az
MPI folyamatok közötti üzenetváltást. Az MPI folyama-
tok valójában nem egymással kommunikálnak, hanem
egy-egy csatornamemóriával. A csomópontok csopor-
tokba vannak szervezve, és mindegyikhez tartozik egy
csatornamemória. Amennyiben egy csomópont üzene-
tet vár, akkor azt a saját csoportjához tartozó csatorna-
memóriától fogja megkapni, viszont ha üzenetet akar
küldeni, akkor a címzett csoportjához tartozó csatorna-
memóriának kell elküldeni. A csatornamemóriák FIFO
elven mûködnek, vagyis az elôször beérkezô üzenet
hagyja el elôször a memóriát.

Ezzel és a több csatornamemória felhasználásával,
valamint a csomópontok csoportokba szervezésével
szerették volna a tervezôk elérni a koordinációs üzene-
tek csökkentését és a vevô számára az üzenetek teljes
sorrendbe szervezését. Egy többszálú szerver végzi az
esemény kezelését, vagyis a beérkezô és a kimenô
üzenetekkel kapcsolatos teendôket. Üzenetek nem csak
a csomópontoktól érkezhetnek, hanem a csomópon-
tokhoz csatolt ellenôrzôpont szerverektôl, és az irányí-
tótól is. Ezek többnyire vezérlô üzenetek. A többszálú
szerver egy FIFO memóriába teszi az üzeneteket,
ahonnan egy megbízható adattárolóra kerülnek, így
abban az esetben, ha egy csomópont tönkremegy, ak-
kor mintegy „újra lejátszható” a kommunikáció az újra-

indított MPI folyamattal. A legfrissebb ellenôrzôpont-
állományok létrehozásának dátumánál régebbi üzene-
teket törlik az adattárolóról.

Az elôzô pontban tárgyaltak alapján a csatorname-
móriák pesszimista típusú naplózást végeznek, mivel
megbízhatóak. A megbízhatóság miatt a hardvernek
szigorúbb követelményeket kell kielégítenie, így igen
drága. Az ellenôrzôpont-szerverek tárolják az ellenôr-
zôpont-állományokat, amelyek a folyamatok egy koráb-
bi állapotát írják le. Minden csomóponthoz egy fájl tar-
tozik a szerveren.

Az ellenôrzôpont-állományok készítését kiváltó ese-
ményeket nem kívülrôl – például az irányítótól – kapják
a csomópontok, hanem lokálisan, adott idôközönként
érkeznek meg. Az algoritmus egy olyan (fork()) rend-
szerhívással kezdôdik, amely az MPI folyamatról egy
másolatot készít. A másolat minden hálózati kapcso-
latot lezár, így minden kommunikációt megszakít, ezzel
lehetôvé válik az ellenôrzôpont-állomány elkészítése.
Amikor elkészült a kép, a folyamat másolata befejezi a
futását. Az ellenôrzôpont-állományt ezután a csomó-
pont elküldi az ellenôrzôpont szervernek. A megoldás
elônye, hogy az eredeti folyamatnak eközben nem kell
megszakítania a futását. A csatornamemóriákhoz ha-
sonlóan az ellenôrzôpont szervereknek is megbízha-
tónak kell lenniük, tehát ez a tulajdonság is hátrányok
közé sorolható.

A következô rendszerelem az irányító. Az irányító
többek között a parancsvégrehajtás inicializálását vég-
zi, vagyis ellenôrzi, hogy a rendszerelemek készen van-
nak-e, csoportokba szervezi a számítást végzô csomó-
pontokat és csatornamemóriát rendel hozzájuk, továb-
bá figyeli a csomópontok állapotát, vagyis hogy érke-
zik-e a csomópontoktól „életjel”, vagy van-e idôtúllépés.
Emellett elindítja a megfelelô példányszámban a prog-
ramokat az egyes számítógépeken, illetve ha egy MPI
folyamat „halott”, akkor azt a fennmaradt csomópontok
valamelyikén újraütemezi.

Ennek az összetett rendszernek a mûködését mu-
tatja a 4. ábra. Az ábrán a legrosszabb eset (Worst Case)
látható, mivel a hálózaton levô ellenôrzôpont-állomány,

Folyamatok hibatoleráns futtatása számítógépfürtön

LIX. ÉVFOLYAM 2004/3 17

3. ábra Az MPICH-V rendszer felépítése

4. ábra Legrosszabb eset:
üzenet és ellenôrzôpont-állomány elveszik

és az üzenet is elvész, hiszen az a számítógép, amelyi-
ken a 2. MPI folyamat futott, tönkrement. Ezt az irá-
nyító veszi észre, mivel a számítógép nem küldött élet-
jelet magáról. Ekkor az irányító a 2. MPI folyamatot egy
másik csomópontra ütemezi úgy, hogy az „új” számító-
gép a 2. folyamat futtatásához szükséges ellenôrzô-
pont-állományt az ellenôrzôpont szervertôl kapja meg.
Az újraütemezett 2. folyamat (2’) az ellenôrzôpont-állo-
mány elkészítésének idôpontjától az újabb kommuni-
kációt a csatorna memóriával játssza le, mivel az 1. folya-
mat a köztük levô üzenetváltásnak ezen a részén már
régen túl esett, vagyis a két folyamat emiatt, és a rend-
szer architektúrája miatt sem tud egymással közvet-
lenül kommunikálni.

Az ábrán a csatorna memória és a 2. folyamat, illet-
ve a 2’. folyamat közötti kommunikációt jelzô folyama-
tos, illetve szaggatott vonal szinte egymást fedik, de va-
lójában idôben nem egyszerre zajlanak az üzenetváltá-
sok, ezért látható az ábrán a látszólagos idôtengely
felirat.

A rendszer elônyei és hátrányai tehát a következôk.
Az irányító nem redundáns, emiatt végzetes hiba kö-
vetkezhet be a kiesésekor. A csatornamemóriáknak és
az ellenôrzôpont szervereknek megbízhatóaknak kell
lenniük, ami tetemes összeggel megemeli a rendszer
árát. A rendszer teljesítményét rontja, hogy a minden
üzenetnek kétszer kell a hálózatra lépnie, mivel az MPI
folyamatoknak a csatornamemóriákon keresztül kell
kommunikálniuk. A hálózatterhelés fôleg nagy méretû
üzenetek esetén mutatkozik meg.

A rendszer elônyei közé sorolható az, hogy az ösz-
szes MPI folyamat „halálát” túl tudja élni, mivel az ellen-
ôrzôpont szerverek a folyamatok konzisztens ellenôr-
zôpont-állományainak halmazát tartalmazzák, továbbá
a csatornamemóriákban a teljes rendszer kommuniká-
ciója el van mentve, ezzel lehetôvé téve a rendszer
gyorsabb helyreállítását. További elônyt jelent az, hogy
az MPI folyamat leállása nélkül lehet ellenôrzôpont-
állományt készíteni a folyamatról.

Az elmúlt években mások is foglalkoztak ezzel a
témával, más szemszögbôl megközelítve a problémát.
Az MPI/FT [7] (Mississippi State University, Department
of Computer Science; MPI Software Technology, Inc.;
NASA Jet Propulsion Laboratory, California Institute of
Technology) módszer feltételezi, hogy a programozó ál-
tal megírt MPI alkalmazás futása során keletkezô hibák
egy-egy csomópont meghibásodásából, továbbá vélet-
lenszerû bithibákból eredhetnek. Tehát az elôzôekben
vizsgált rendszertôl az MPI/FT ezzel is többre képes.
Ezeket a bithibákat okozhatják a vezetékeken fellépô
elektromágneses zavarok, áthallások. Feltételezi to-
vábbá, hogy a processzor második szintû (L2) gyorsí-
tótára mind a memória külsô zavarok, mind az ûrbôl ér-
kezô nagyenergiájú töltött részecskék ellen védve van,
így a véletlen bithibák nem okozhatnak ezeken a he-
lyeken gondot.

A hibadetektálásnak és javításnak több módszerét
veti fel az MPI/FT. Önellenôrzô szálak (SCT – Self-
Checking Thread) használatát javasolja, amelyek kü-

lönbözô feladatokat töltenének be. Folyamatok glo-
bális adatstruktúráira szavaznának egyszerû többségi
döntéssel, továbbá lokális adatokat több példányban
tárolnának és idôközönként szintén többségi szava-
zással eldöntenék, hogy melyikük tartalmaz helyes ada-
tokat. Ezekre a szavazásokra fôleg olyan helyeken van
szükség, ahol gyakran elôfordulhatnak az adatokban
véletlenszerû változások, például bithibák. Ilyen kör-
nyezet tipikusan a nagyszámú nagyenergiájú, illetve
töltött részecskéket tartalmazó hely, például az ûr. To-
vábbi feladatuk lehetne egy nem blokkoló kollektív függ-
vény idônkénti meghívása, mellyel észlelni lehetne a
kiesett MPI folyamatokat, mivel ezek nem hívják meg a
függvényt, így az a hívó oldalon idôtúllépéssel hibát fog
jelezni. Feladatuk lenne még a folyamatok közötti kom-
munikáció és a belsô dinamikus memória lefoglalás fi-
gyelése is.

A hibatûrô rendszer részét képezi a koordinátor (Coor-
dinator) is, amely az elôzôekben taglalt csatornamemó-
riához és irányítóhoz hasonlóan mûködik. Ez a koor-
dinátor az SPMD (Single Program, Multiple Data) alkal-
mazásoknál egy különálló számítógép lehet, illetve a
mester/szolga modellben a mester töltheti be az adott
funkciót. A tudományos programok jelentôs része a
mester/szolga vagy az SPMD modellt követi. Az SPMD
modell lényege, hogy minden processzor ugyanazt a
programot hajtja végre, de a folyamatok futása minden
processzoron más-más irányt vehet. Mivel ezek a mo-
dellek a legelterjedtebbek, ezért az MPI/FT is ezekkel
tud a legjobban együttmûködni.

A koordinátor feladata az MPI alkalmazás folyama-
tos ellenôrzése, a kiesett folyamat újraindítása egy el-
lenôrzôpontról, majd a napló alapján a kommunikáció
újralejátszása a folyamattal, hogy a rendszer újra kon-
zisztens állapotba kerüljön. A feladatai közé tartozik
továbbá az is, hogy az üzenetek számára virtuális csa-
tornaként mûködjön, mivel így minden kommunikációt
naplózni tud. Periodikusan vezérlôüzeneteket kell kül-
denie az önellenôrzô szálaknak, ezenkívül válaszol-
nia kell az általuk küldött üzenetekre.

A biztosabb végeredmény érdekében a párhuza-
mos nMR (n-Modular Redundancy) módot vezették be

HÍRADÁSTECHNIKA

18 LIX. ÉVFOLYAM 2004/3

5. ábra Párhuzamos nMR végrahajtás

a tervezôk, amelynek a lényege, hogy minden MPI fo-
lyamatnak n példánya készül az MPI alkalmazás indí-
tásakor. Ezt szemlélteti az 5. ábra [7].

Az ábrán az MPI alkalmazást 4 párhuzamos folya-
mattal indítjuk el, és mindegyiknek készül két másola-
ta. Az ábrán jól látható, hogy mi történik üzenetküldés-
kor. Ha a nulladik folyamat az elsônek üzenetet akar
küldeni, akkor azt az elsô folyamat minden példánya
megkapja, illetve ha az elsô üzenetet vár a nulladik fo-
lyamattól, akkor a nulladik folyamat összes példányától
megkapja azt. Ekkor a vevô a vett üzeneteket össze-
hasonlítva egyszerû többségi szavazással megállapít-
hatná, hogy melyik üzenet tartalmaz helyes adatokat. A
folyamatok az eredményeket egy-egy fájlban tárolhat-
ják és egy független szavazó program ezeket össze-
hasonlíthatja.

Az MPI/FT hátrányai a központosított irányítás, a
koordinátor használata. A koordinátor ment el minden
kommunikációt, amely a folyamatok között lezajlik, ami
azt jelenti, hogy a koordinátor egy létfontosságú elem
(centralizált). A rendszer ezt az nMR mód segítségével
szeretné kiküszöbölni, vagyis redundáns koordinátort
vezet be. Ez rövid számolás után igen nagy hálózat-
terhelést jelent.

Tegyük fel, hogy egyetlen folyamat akar üzenetet
küldeni egy másiknak. Mivel ezek a folyamatok is nMR
módban futnak, ezért mindegyikbôl van a rendszerben
n példány. A mûködési elv alapján így n darab folyamat
fog n másik folyamatnak üzenetet küldeni, ami össze-
sen eddig n2 üzenetet jelent. Ehhez hozzá kell venni,
hogy minden üzenetnek keresztül kell mennie a koor-
dinátoron, vagyis minden üzenet kétszer kerül a háló-
zatra, tehát 2*n2 üzenetnél tartunk. Mivel a koordiná-
tor is nMR módban fut, ez azt jelenti, hogy ugyanez az
üzenetmennyiség megjelenik minden egyes koordi-
nátor miatt a hálózaton, vagyis az eredetileg elküldeni
szándékozott egy darab üzenetbôl 2*n3 üzenet kelet-
kezett.

Hogy még inkább szemléltessem a probléma súlyát,
figyelembe kell venni, hogy egyszerû többségi döntés
végrehajtásához n-et páratlannak érdemes választani,
hogy ne kerüljünk döntésképtelen helyzetbe. Ez azt
jelenti, hogy n-nek legalább 3-nak kell lennie, vagyis a
minimális hálózatterhelés esetén is 1 üzenet elküldése
valójában 54 üzenetküldéssel jár. Ezek után már nem
is érdemes abba belegondolni, ha az üzenet mérete
nô, vagy ha nem csak két folyamat kommunikál, ahogy
az elôzôekben feltételeztem, hanem több.

Ezek a tények arra engednek következtetni, hogy
az MPI/FT-t nem érdemes nagy számítógépfürtökben
alkalmazni, hanem inkább kisebb, nagy megbízhatósá-
gú, redundáns rendszerekben lehet hasznát venni, mint
amilyenek egy ûreszközön is elôfordulhatnak. További
lehetséges alkalmazási területe a megoldásnak az,
hogy dedikált processzorokat alkalmazunk, amelyek
pont-pont összeköttetéseken keresztül kommunikálnak
egymással, hiszen ekkor a nagy hálózati terhelés meg-
oszlik az összeköttetések között.

Összefoglalás

A cikkben áttekintettem a számítógépfürtökre kidolgo-
zott hibatûrô rendszerek egy részét. Értelmeztem az
alapvetô fogalmakat, az ellenôrzôpont koordináció és
a naplózás típusait, jelentôségüket. Bemutattam az
MPICH-V és az MPI/FT hibatûrésre kidolgozott meg-
oldások architektúráját, a hibadetektálási és javítási
folyamatuk lényegét. Kifejtettem a rendszerek elônyeit,
hátrányait, miszerint az MPICH-V drága, de megbízha-
tó, így nem redundáns rendszerelemeket alkalmaz,
illetve túl tudja élni akár az összes MPI folyamat „ha-
lálát”.

Az MPI/FT ezzel ellentétben olcsó redundáns rend-
szerelemeket alkalmaz, a hibavalószínûséget a pár-
huzamos nMR móddal próbálja csökkenteni. Sajnos ez
a megoldás a túlzottan nagy hálózatterheléssel jár,
ezért nem igazán alkalmas arra, hogy nagy számító-
gépfürtön használjuk.

Irodalom

[1] Nemzeti Információs Infrastruktúra Fejlesztési (NIIF)
Program Szuperszámítógép Központjának honlapja,
http://www.iif.hu/szuper/

[2] TLTP High Performance Computing Courseware,
High Performance Computing Consortium,
http://www.cs.ncl.ac.uk/old/modules/2002-03/
csc305/TLTP_HPC_Course/

[3] HP MPI User’s Guide,
National Center for Supercomputing Applications,
http://archive.ncsa.uiuc.edu/SCD/Hardware/
CommonDoc/HP/MPI/1_intro.html

[4] C. J. Beckmann, D. D. McManus, G. Cybenko:
”Horizons in scientific and distributed Computing”,
COMPUTING IN SCIENCE & ENGINEERING,
January-February 1999, pp.23-30.

[5] ISO 7498, Information Processing Systems –
Open System Interconnection – Basic Reference Model,
International Standards Organization, Geneva, 1984.

[6] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali,
G. Fedak, C. Germain, Th. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, A. Selikhov:
”MPICH-V: Toward a scalable fault tolerant MPI
for Volatile nodes”, SC2002

[7] R. Batchu, Jothi P. Neelamegam, Z. Cui, M. Beddhu,
A. Skjellum, Y. Dandass, M. Apte:
”MPI/FTTM: Architecture and Taxonomies for
Fault-Tolerant, Message-Passing Middleware
for Performance-Portable Paralell Computing”,
DSM 2001, May 2001, pp.26-33.

Folyamatok hibatoleráns futtatása számítógépfürtön

LIX. ÉVFOLYAM 2004/3 19

