Folyamatok hibatolerans futtatasa
szamitogeépfurton
KATONA ZOLTAN

Budapesti Miszaki és Gazdasagtudomanyi Egyetem, Szélessavu Hirkézlés és Villamossagtan Tanszék
kz340@hszk.bme.hu

Kulcsszavak: nagy kapacitast igénylé programok, MPI, egyiittmiikédési hibak

A cikkben két hibatlir6 rendszert mutatok be, melyet az egy-két processzoros személyi szamitégépekbdl allé szamitégép-
frtékre dolgoztak ki. Jelen esetben hiba alatt az olyan véletleniil bekévetkez6 eseményeket értjik, melyek miatt egy, vagy
tébb szamitégép tébbé nem része a szamitégépflirtnek. A kivalté ok lehet tébbek kbz6tt a merevlemez, memdria, alaplap, vagy
a processzor meghibasoddsa, dramsziinet, de akdr az operaciés rendszer, vagy barmelyik létfontossagu szoftver lefagyasa
is. A hibatiiré rendszerek legfontosabb feladata, hogy a tébb hétig, honapig futé nagy szamitasigényi alkalmazast ne kelljen
ujrainditani egy ilyen nem vart esemény miatt. Biztositaniuk kell az alkalmazdas zavartalan futasat, amelyet a hibak detektala-

sdval, illetve ezek kikiiszébdélésével érhetnek el.
Bevezetés

A kutatas és a tudomanyok teriiletén egyre nagyobb
szlikség van olyan szamitégépes hattérre, amely tamo-
gatja a nagy szamitasigényd, nagy pontossagu alka-
Imazasok (HPC — High Performance Computing) futta-
tasat. Ezekhez a feltételekhez a legalkalmasabb kor-
nyezetet az igen draga, azonban gyors és megbizha-
td, tébb processzoros, nagy memoriaval és hattértarral
rendelkez8 szuperszamitégépek nyujtjak. Tébbnyire az
egyetemek, kutatdkézpontok nem engedhetik meg ma-
guknak, hogy sajat célra ilyen eszkdzt vasaroljanak,
ezért sorba kell allniuk, hogy hasznalhassak a vilag va-
lamelyik szuperszamitégép-kézpontjanal rendelkezés-
re allé6 kapacitast. A helyzet azonban enyhilt azéta,
hogy Magyarorszagon a Nemzeti Informacids Infrastruk-
tira Fejlesztési Iroda Szuperszamitdgép Kdzpontjaban
[1] 2001-ben Gzembehelyeztek egy mara, 196 procesz-
szorosra béviilt Sun szuperszamitogépet.

Sajnos ennek ellenére is fennallnak a fent emlitett
nehézségek, amelyeknek a kikiiszébdlésére kidolgoz-
tak egy megoldast, melyben olcsd, egy-két processzo-
ros, kis szamitasi kapacitassal rendelkez6 személyi
szamitégépeket kétnek 6ssze egy haldzattal (Work-
station Cluster), hogy az egyittes szamitasi teljesitmé-
nyik elég nagy legyen ahhoz, hogy megkédzelitsék a
szuperszamitogépekét. Ez a megoldas két problémat
vet fel:

* Hogyan lehet elérni a szamitdgépek és a rajtuk futd
folyamatok (processzek) ésszehangolt miikédését?
* A személyi szamitégépek olcsosagukbol eredden
megbizhatatlanok lehetnek, vagyis a meghibaso-

dasig tartd idé varhatdértéke sokkal kisebb, mint a

szuperszamitégépeké (MTBF — Mean Time Between

Failures).

Az 1990-es évek elején az els6 problémakér meg-
oldasara hozta létre az MPI Forum tébb mint 40 szer-
vezet reszveételével az MPI szabvanyt [2, 3]. Az (izenet-

LIX. EVFOLYAM 2004/3

tovabbito illesztd feliilet (MPI — Message Passing Inter-
face) célja az, hogy a gyakorlatban is alkalmazhato,
hordozhat6, hatékony és rugalmas fellletet biztositson
lzenettovabbitas céljabol. Ennek az interfésznek a se-
gitségével lehet megoldani tébb szamitdégépen futd
folyamatoknak a hatékony kommunikaciéjat. A szab-
vany altal definialt MPI a viszonyréteget és a megje-
lenitési réteget foglalja el az ISO OSI hétrétegl modell-
jében [4, 5]. Olyan értékndvelt szolgaltatasokat nyduijt,
mint a folyamatok szinkronizalasa, a feladat szétosz-
tas, masrészt foglalkozik a tovabbitandd informacidk
szintaktikdjaval és szemantikajaval, amivel az adatab-
razolas kiléonb6z6ségeibdl eredd problémakat kikiiszo-
béli a heterogén rendszerekben (SGI IRIX, DEC Alpha
stb.).

A masodik probléma megsziintetésére kilonb6z6
hibadetektald és elharité technikak jelentek meg az
evek soran, melyeknek az el6bb ismertetett MPI szab-
vanyon alapulé két eltéré gyakorlati megvalésitasat sze-
retném bemutatni.

A hibadetektalo
és elharito technikak

A kovetkez8 pontban leirt hibatlré rendszerek muko-
désének megértéséhez néhany alapfogalmat tisztazni
kell. A cikkben MPI alkalmazasnak nevezziik a szamito-
gépflrtén futd, nagy szamitasi kapacitast igénylé prog-
ramot. Az MPI alkalmazas tébb folyamatbdl all, melyek
mindegyike idealis esetben egy kilén processzoron
fut. Ezek a folyamatok egymasnak (izeneteket — pél-
daul kiindulasi adatokat, eredményeket — kiildve kom-
munikalnak, hogy az egész alkalmazas sikeresen befe-
jezze a munkat.

A hibadetektal6 és elharit6é technikdkat harom fon-
tos paraméter kiilénbdzteti meg: az atlatszosag (trans-
parency), az ellenérzépont koordinacié (checkpoint coor-

15

HiRADASTECHNIKA

dination) és az (izenetek naplozdsa (message logging)
[6]. Ahhoz, hogy az atlatszésag teljesiljon, az lizenet-
tovabbité alkalmazdsnak képesnek kell lennie mind
futasi id6ben az automatikus hibadetektalasra és javi-
tasra, mind a hibajavitasi folyamatba becstszé hibardl
ertesitést adni a programozoénak, felhasznalonak. Az
ellenérz6pont-allomany (checkpoint image) nem mas,
mint egy, a folyamat futasa soran keletkez§ részered-
ményeket tarold allomany. Ha a szamitégép, amelyen a
folyamat eddig futott, hiba kévetkeztében kiesik a sza-
mitdégépflrtbdl, akkor a hibatlird rendszer ezt a folya-
matot egy olyan gépre ltemezi, amely tovabbra is a flrt
tagja. Amennyiben nem késziilt ellenérzépont-allomany
a hiba miatt kiesett folyamatrdl, akkor az Ujralitemezés
soran eldlrél kell kezdenie a szamitasokat, ellenkezé
esetben azonban a részeredmények segitségével a
legutolsé kozbllsé allapotbol folytathatja a feldolgo-
zast.

|
Ujrainditas W—

Hibadetekcid,
Globalis leallas

Hiba
id6

Ellenérzépont

készités

Szinkronizalas —O—O—O—O_

1. 2. 3. 4.
Folyamatok

1. abra

Koordinalt ellenérz8pont-alloméany készités

Az ellendrzépont koordinaciénak két fontos tipusa
van. A koordinalt, illetve a nem koordinalt valtozat. A
koordinalt esetben, ahogy az 1. dbra is mutatja, min-
den folyamatot szinkronizalni kell, vagyis be kell szln-
tetnilik a haldzati kommunikaciot, hogy ne vesszen el
informacié az ellenérzépont-allomanyok készitésekor.
Amennyiben egy folyamatot Gjra kell inditani, mert kie-
sett az a szamitdégép, amelyen eddig futott, akkor mind-
egyik folyamat Gjraindul a legfrissebb ellenérzépontrol.
Sajnos ezek a tulajdonsagok okozzak, hogy ez a méd-
szer nem skalazhatd, mivel nem lehet csak a kiesett fo-
lyamatokat ujraiitemezni, hanem mindegyiket Gjra kell
inditani az utols6 ellenérzépontrol.

Ez nagyban néveli a rendszer sériilékenységét, hi-
szen ha nem tal s(riin készitlink ellenérzépont-allo-
manyokat, akkor értékes processzor id6k veszhetnek
el hiba esetén, akar csak egy gép kiesésekor is, mivel
igy mindegyik szamitdogép munkaja elvész. Ha sdrdb-
ben készitlink ellenérzépont-allomanyokat, akkor ez ke-
vésbé hangsulyos, eltekintve az ehhez sziikséges tébb-
let id6t6l.

A nem koordindlt esetben egymastdl fliggetlendl,
szinkronizalas nélkil, eltéré id6pontban készithetd mind-

16

egyik folyamatrdl ellen6rz8pont-allomany, igy a rend-
szer skalazhatd, vagyis elegendd csak a kiesett folya-
matokat djraitemezni. Nem koordinalt esetben a folya-
matok nem szlintetik be az ellenérz6pont-allomanyok
elkészitésekor a haldzati kommunikaciot.

Ez azt jelenti, hogy a hal6zaton lev6 lzeneteket
naplézni kell, mivel az ellendérz8pont-allomanyok nem
hordoznak semmiféle informaciét ezekrél. Vagyis, ha
egy folyamat lzenetet kiild egy masiknak — példaul
egy kiindulasi adatot — és a cimzett kiesik, nem kapja
meg az lUzenetet, akkor az Gjralitemezett folyamat var-
ni fogja az lGzenetet, de a feladé abban a hitben él,
hogy a cimzett mar megkapta. Ez végs6 soron az egész
alkalmazas fennakadasahoz vezethet. A 2. dbraa nem
koordinalt ellenérzépont-allomany készitésre mutat egy
példat.

Ha a hibatlrd rendszer nem készit ellenérzépont-
allomanyokat, akkor a rendszer csak a kommunikacios
naplokra hagyatkozhat a kiesett folyamatok Gjraliteme-
zésekor, vagyis a folyamatokat nem lehet részeredmé-
nyek segitségével egy kdzblilsé allapotbdl Gjrainditani.
Az egész alkalmazast a szamitas legelejétdl Gjra kell
inditani. Ebben az esetben a kommunikacids naplok-
nak az a haszna, hogy a folyamatoknak nem kell var-
niuk az lizenetekre, mert az a kiesés pillanataig rendel-
kezésre all.

Az lzenetek naplozasa is tébbféle lehet. Létezik
pesszimista és optimista napldézas. Pesszimista eset-
ben megbizhatoé adattarolé eszkézre mentik az lze-
neteket, amelyeknek nagy az MTBF-je, ezért igen kicsi
valészinlséggel vesznek el err6l adatok. Optimista
esetben nem megbizhaté adattaroléra mentik az Gizene-
teket.

Amennyiben egy szamitogép ténkremegy, akkor a
folyamatot mas szamitégépek naploinak megfelelGen
inditjak Gjra, viszont ha egynél tébb szamitégép hiba-
sodik meg, akkor az utolsé koherens ellenérzépontrol
torténik a folyamat Gjrainditas, mivel ha rosszul van meg-
tervezve a rendszer, akkor a kiesett gépek kézotti kom-
munikacio is megszakad, amit csak ugy lehet kikiiszo-
bélni, hogy a folyamatokat a koherens ellenérz6pon-
tokrol inditjuk Gjra.

2. abra
Nem koordinalt ellenérzépont-allomany készités

A A A A

e

Hiba ———————— F———]——-

Ujrainditas

Hibadetekcié

idé

Ellenérzépont
készités

1. 2. 3. 4.

Folyamatok

LIX. EVFOLYAM 2004/3

Csatorna
memoriak

Ellenérzépont
szerverek

@

O
O

O Csomoépontok

(szamitégépek)

Iranytd

3. abra Az MPICH-V rendszer felépitése

Hibatiiro megoldasok,
elonyeik és hatranyaik

Az alapok tisztdzasa utan ratérek néhany gyakorlati
példa részletezésére. Az els@ hibatlird rendszer, ame-
lyet bemutatok az MPICH-V [6], (Cluster&GRID group,
Laboratoire de Recherche en Informatique, University
of Paris South). Ez a hibatlré rendszer azt feltételezi,
hogy az MPI alkalmazas futdsa soran keletkezé hibak
a szamitégépek meghibasodasa miatt keletkeznek.
Ennek az elgondolasnak az architektdraja tébb elem-
b6l all. Megbizhaté csatornamemoriak (Channel Me-
mory), megbizhaté ellenérzépont szerverek (Checkpoint
Server) és egy iranyité (Dispatcher) alkotjak a csomo-
pontokkal (Node) egyiitt a rendszert, ahogyan a 3. abra
is mutatja.

A csatornamemoridk feladata, hogy naplézzak az
MPI folyamatok kézétti lizenetvaltast. Az MPI folyama-
tok val6jaban nem egymassal kommunikalnak, hanem
egy-egy csatornamemdriaval. A csomopontok csopor-
tokba vannak szervezve, és mindegyikhez tartozik egy
csatornamemoéria. Amennyiben egy csomépont lzene-
tet var, akkor azt a sajat csoportjahoz tartozé csatorna-
memodriatdl fogja megkapni, viszont ha (zenetet akar
klldeni, akkor a cimzett csoportjahoz tartoz6 csatorna-
memorianak kell elkildeni. A csatornamemoriak FIFO
elven miikdédnek, vagyis az el6szér beérkez8 lzenet
hagyja el el6sz6r a memoriat.

Ezzel és a tdbb csatornamemodria felhasznalasaval,
valamint a csomopontok csoportokba szervezésével
szerették volna a tervez6k elérni a koordinacids lizene-
tek csOkkentését és a vevd szamara az lizenetek teljes
sorrendbe szervezését. Egy tdébbszall szerver végzi az
esemény kezelését, vagyis a beérkezé és a kimend
tizenetekkel kapcsolatos teend6ket. Uzenetek nem csak
a csomépontoktdl érkezhetnek, hanem a csomépon-
tokhoz csatolt ellenérz6pont szerverektdl, és az iranyi-
totol is. Ezek tébbnyire vezérl§ (izenetek. A tébbszald
szerver egy FIFO memdériaba teszi az Uzeneteket,
ahonnan egy megbizhaté adattaroléra kerilnek, igy
abban az esetben, ha egy csomopont tonkremegy, ak-
kor mintegy ,Ujra lejatszhaté” a kommunikacié az Ujra-

LIX. EVFOLYAM 2004/3

Folyamatok hibatolerans futtatdsa szamitégépfirtdon

inditott MPI folyamattal. A legfrissebb ellenérzépont-
allomanyok létrehozasanak datumanal régebbi lzene-
teket térlik az adattarolorol.

Az el6z8 pontban targyaltak alapjan a csatorname-
moriak pesszimista tipusU naplézast végeznek, mivel
megbizhatéak. A megbizhatdsag miatt a hardvernek
szigorubb kdvetelményeket kell kielégitenie, igy igen
draga. Az ellenérzépont-szerverek taroljak az ellenér-
z6pont-allomanyokat, amelyek a folyamatok egy korab-
bi allapotat irjak le. Minden csoméponthoz egy fajl tar-
tozik a szerveren.

Az ellenérzépont-allomanyok készitését kivalté ese-
ményeket nem Kivilrél — példaul az iranyit6t6l — kapjak
a csomoépontok, hanem lokdlisan, adott id6kézénként
erkeznek meg. Az algoritmus egy olyan (fork()) rend-
szerhivassal kezdddik, amely az MPI folyamatrdl egy
masolatot készit. A masolat minden halézati kapcso-
latot lezar, igy minden kommunikacioét megszakit, ezzel
lehetéve valik az ellenérz8pont-allomany elkészitése.
Amikor elkészllt a kép, a folyamat masolata befejezi a
futasat. Az ellen6rz6pont-allomanyt ezutan a csomé-
pont elkiildi az ellenérz6pont szervernek. A megoldas
el6nye, hogy az eredeti folyamatnak ekézben nem kell
megszakitania a futasat. A csatornamemoriakhoz ha-
sonldan az ellenérz6pont szervereknek is megbizha-
ténak kell lenniiik, tehat ez a tulajdonsag is hatranyok
kézé sorolhaté.

A kdvetkezd rendszerelem az iranyitd. Az iranyito
tébbek koz6tt a parancsvégrehajtas inicializalasat vég-
zi, vagyis ellendrzi, hogy a rendszerelemek készen van-
nak-e, csoportokba szervezi a szamitast végzé csomo-
pontokat és csatornamemodriat rendel hozzajuk, tovab-
ba figyeli a csomépontok allapotat, vagyis hogy érke-
zik-e a csomoépontoktol ,eletjel”, vagy van-e id6tallepés.
Emellett elinditja a megfelel6 példanyszamban a prog-
ramokat az egyes szamitdgépeken, illetve ha egy MPI
folyamat ,halott”, akkor azt a fennmaradt csomépontok
valamelyikén Gjralitemezi.

Ennek az dsszetett rendszernek a mikédését mu-
tatja a 4. dbra. Az abran a legrosszabb eset (Worst Case)
lathat6, mivel a halézaton levd ellenérz8pont-allomany,

4. abra Legrosszabb eset:
lizenet és ellen6rzépont-dllomany elveszik

latszélagos idétengely

7
Iy \ \
AR SV
T e
@ Visszatérés a legutobbi

Ellenérzépont-allomanyhoz

:rzj Masik szamitégépen Gjraltemezett folyamat
Ellen6rzépont - allomanyok
(1O (@ Folyamatok

@ Csatorna memoria

C

Ellenérzépont szerver

17

HiRADASTECHNIKA

és az lizenet is elvész, hiszen az a szamitdgép, amelyi-
ken a 2. MPI folyamat futott, ténkrement. Ezt az ira-
nyité veszi észre, mivel a szamitégép nem kuldétt élet-
jelet magarol. Ekkor az iranyité a 2. MPI folyamatot egy
masik csomopontra (temezi Ugy, hogy az ,0j” szamito-
gép a 2. folyamat futtatdsahoz szlikséges ellen6rzé-
pont-allomanyt az ellenérzépont szervertdl kapja meg.
Az Ujratitemezett 2. folyamat (2’) az ellenérz6pont-allo-
many elkészitésének idépontjatél az ujabb kommuni-
kaciét a csatorna memdariaval jatssza le, mivel az 1. folya-
mat a koztiik lev6 lizenetvaltasnak ezen a részén mar
régen tul esett, vagyis a két folyamat emiatt, és a rend-
szer architektdraja miatt sem tud egymassal kdzvet-
lendl kommunikalni.

Az abran a csatorna meméoria és a 2. folyamat, illet-
ve a 2'. folyamat kdzo6tti kommunikaciét jelzé folyama-
tos, illetve szaggatott vonal szinte egymast fedik, de va-
I6jaban id6ben nem egyszerre zajlanak az (izenetvalta-
sok, ezért lathaté az abran a latszolagos idétengely
felirat.

A rendszer el6nyei és hatranyai tehat a kévetkezdk.
Az iranyité nem redundans, emiatt végzetes hiba ko-
vetkezhet be a kiesésekor. A csatornamemdridknak és
az ellenérz6pont szervereknek megbizhatdéaknak kell
lennilk, ami tetemes 6sszeggel megemeli a rendszer
arat. A rendszer teljesitményét rontja, hogy a minden
lzenetnek kétszer kell a hal6zatra Iépnie, mivel az MPI
folyamatoknak a csatornamemdériakon keresztil kell
kommunikalniuk. A halézatterhelés f6leg nagy méret
lzenetek esetén mutatkozik meg.

A rendszer el6nyei kézé sorolhatd az, hogy az 6sz-
szes MPI folyamat ,halalat” tdl tudja élni, mivel az ellen-
6rz6pont szerverek a folyamatok konzisztens ellenér-
z6pont-allomanyainak halmazat tartalmazzak, tovabba
a csatornamemdridkban a teljes rendszer kommunika-
cioja el van mentve, ezzel lehet6évé téve a rendszer
gyorsabb helyreallitasat. Tovabbi el6nyt jelent az, hogy
az MPI folyamat ledllasa nélkill lehet ellenérzépont-
allomanyt késziteni a folyamatrdl.

Az elmult években masok is foglalkoztak ezzel a
témaval, mas szemszdgbdl megkdzelitve a problémat.
Az MPI/FT [7] (Mississippi State University, Department
of Computer Science; MPI Software Technology, Inc.;
NASA Jet Propulsion Laboratory, California Institute of
Technology) médszer feltételezi, hogy a programoz6 al-
tal megirt MPI alkalmazas futasa soran keletkezé hibak
egy-egy csomépont meghibasodasabol, tovabba vélet-
lenszeri bithibakbdl eredhetnek. Tehat az el§z6ekben
vizsgalt rendszert6l az MPI/FT ezzel is tébbre képes.
Ezeket a bithibakat okozhatjak a vezetékeken fellépd
elektromagneses zavarok, athallasok. Feltételezi to-
vabba, hogy a processzor masodik szintl (L2) gyorsi-
tétara mind a meméria kils6 zavarok, mind az (irbél ér-
kez8 nagyenergiaju toltott részecskék ellen védve van,
igy a véletlen bithibak nem okozhatnak ezeken a he-
lyeken gondot.

A hibadetektalasnak és javitasnak t6bb mddszerét
veti fel az MPI/FT. Onellenérzé szélak (SCT — Self-
Checking Thread) hasznalatat javasolja, amelyek ku-

18

I6nb6z8 feladatokat téltenének be. Folyamatok glo-
balis adatstruktiraira szavaznanak egyszer(tébbségi
doéntéssel, tovabba lokalis adatokat tébb példanyban
tarolnanak és id6kézdénként szintén tébbségi szava-
zassal elddntenék, hogy melyikiik tartalmaz helyes ada-
tokat. Ezekre a szavazdasokra f6leg olyan helyeken van
sziikség, ahol gyakran el6fordulhatnak az adatokban
véletlenszer(valtozasok, példaul bithibak. llyen kor-
nyezet tipikusan a nagyszamu nagyenergiajd, illetve
toltott részecskéket tartalmazo hely, példaul az dr. To-
vabbi feladatuk lehetne egy nem blokkol6 kollektiv fligg-
vény idénkénti meghivasa, mellyel észlelni lehetne a
kiesett MPI folyamatokat, mivel ezek nem hivjak meg a
fliggvényt, igy az a hivo oldalon idétullépéssel hibat fog
jelezni. Feladatuk lenne még a folyamatok kdz6tti kom-
munikaci6 és a bels6 dinamikus memoria lefoglalas fi-
gyelése is.

A hibat(ir6é rendszer részét képezi a koordinator (Coor-
dinator) is, amely az el6z6ekben taglalt csatornamemo-
ridhoz és iranyitéhoz hasonléan mikdédik. Ez a koor-
dinator az SPMD (Single Program, Multiple Data) alkal-
mazasoknal egy kulénalldé szamitdégép lehet, illetve a
mester/szolga modellben a mester téltheti be az adott
funkciot. A tudomanyos programok jelentds része a
mester/szolga vagy az SPMD modellt kéveti. Az SPMD
modell I1ényege, hogy minden processzor ugyanazt a
programot hajtja végre, de a folyamatok futdsa minden
processzoron mas-mas iranyt vehet. Mivel ezek a mo-
dellek a legelterjedtebbek, ezért az MPI/FT is ezekkel
tud a legjobban egyuttm(kodni.

A koordinator feladata az MPI alkalmazas folyama-
tos ellendrzése, a kiesett folyamat Gjrainditasa egy el-
len6rz6pontrol, majd a naplé alapjan a kommunikacioé
Ujralejatszasa a folyamattal, hogy a rendszer Gjra kon-
zisztens allapotba keriljén. A feladatai kdzé tartozik
tovabba az is, hogy az lizenetek szamara virtudlis csa-
tornaként miikédjon, mivel igy minden kommunikaciot
naplézni tud. Periodikusan vezérl6lzeneteket kell kiil-
denie az 6nellen6rz§ szalaknak, ezenkivil vélaszol-
nia kell az altaluk kildétt Gzenetekre.

A biztosabb végeredmény érdekében a parhuza-
mos nMR (n-Modular Redundancy) modot vezették be

5. abra Parhuzamos nMR végrahajtas

T

Y

| Fuggetlen szavazé <
program

---—» Vev6 szemszdge
——> Kild6 szemszoge

LIX. EVFOLYAM 2004/3

a tervezdk, amelynek a lényege, hogy minden MPI fo-
lyamatnak n példanya késziil az MPI alkalmazas indi-
tasakor. Ezt szemlélteti az 5. abra [7].

Az abran az MPI alkalmazast 4 parhuzamos folya-
mattal inditjuk el, és mindegyiknek késziil két masola-
ta. Az abran jél lathatd, hogy mi térténik lzenetkildés-
kor. Ha a nulladik folyamat az els6ének (zenetet akar
kildeni, akkor azt az els§ folyamat minden példanya
megkapja, illetve ha az els6 lizenetet var a nulladik fo-
lyamattol, akkor a nulladik folyamat ésszes péeldanyatdl
megkapja azt. Ekkor a vev§ a vett (izeneteket dssze-
hasonlitva egyszeri tébbségi szavazassal megallapit-
hatna, hogy melyik Gizenet tartalmaz helyes adatokat. A
folyamatok az eredményeket egy-egy fajlban tarolhat-
jak és egy fliggetlen szavazd program ezeket dssze-
hasonlithatja.

Az MPI/FT hatranyai a kézpontositott iranyitas, a
koordinator haszndlata. A koordinator ment el minden
kommunikaciot, amely a folyamatok kézétt lezajlik, ami
azt jelenti, hogy a koordinator egy létfontossagu elem
(centralizalt). A rendszer ezt az nMR mdéd segitségével
szeretné kikliszobdlIni, vagyis redundans koordinatort
vezet be. Ez révid szamolas utan igen nagy halézat-
terhelést jelent.

Tegyuk fel, hogy egyetlen folyamat akar Uzenetet
kildeni egy masiknak. Mivel ezek a folyamatok is nMR
modban futnak, ezért mindegyikbdl van a rendszerben
n péeldany. A mikddési elv alapjan igy n darab folyamat
fog n masik folyamatnak Gizenetet kildeni, ami 6ssze-
sen eddig n? lizenetet jelent. Ehhez hozza kell venni,
hogy minden lzenetnek keresztil kell mennie a koor-
dinatoron, vagyis minden lzenet kétszer keril a halé-
zatra, tehat 2*n” lzenetnél tartunk. Mivel a koordina-
tor is nMR mdédban fut, ez azt jelenti, hogy ugyanez az
lzenetmennyiség megjelenik minden egyes koordi-
nator miatt a halézaton, vagyis az eredetileg elkildeni
szandékozott egy darab (zenetbdl 2*n° izenet kelet-
kezett.

Hogy még inkabb szemléltessem a probléma sulyat,
figyelembe kell venni, hogy egyszer(i tébbségi dontés
végrehajtasahoz n-et paratlannak érdemes valasztani,
hogy ne keriljink déntésképtelen helyzetbe. Ez azt
jelenti, hogy n-nek legalabb 3-nak kell lennie, vagyis a
minimalis hal6zatterhelés esetén is 1 lzenet elklldése
valéjaban 54 lzenetkildéssel jar. Ezek utan mar nem
is érdemes abba belegondolni, ha az lGzenet mérete
nd, vagy ha nem csak két folyamat kommunikal, ahogy
az el6z8ekben feltételeztem, hanem tdébb.

Ezek a tények arra engednek kdvetkeztetni, hogy
az MPI/FT-t nem érdemes nagy szamitdgépfirtékben
alkalmazni, hanem inkabb kisebb, nagy megbizhatdsa-
gu, redundans rendszerekben lehet hasznat venni, mint
amilyenek egy (reszkdzon is eléfordulhatnak. Tovabbi
lehetséges alkalmazasi teriilete a megoldasnak az,
hogy dedikalt processzorokat alkalmazunk, amelyek
pont-pont 6sszekottetéseken keresztlil kommunikalnak
egymassal, hiszen ekkor a nagy hal6zati terhelés meg-
oszlik az 8sszekottetések kdzott.

LIX. EVFOLYAM 2004/3

Folyamatok hibatolerans futtatdsa szamitégépfirtdon

Osszefoglalas

A cikkben attekintettem a szamitdgépfirtdkre kidolgo-
zott hibat(iré rendszerek egy részét. Ertelmeztem az
alapvetd fogalmakat, az ellenérz6pont koordinacié és
a naplézas tipusait, jelentségiiket. Bemutattam az
MPICH-V és az MPI/FT hibat(irésre kidolgozott meg-
oldasok architektirajat, a hibadetektalasi és javitasi
folyamatuk Iényegét. Kifejtettem a rendszerek elnyeit,
hatranyait, miszerint az MPICH-V draga, de megbizha-
td, igy nem redundans rendszerelemeket alkalmaz,
illetve tdl tudja élni akar az 6sszes MPI folyamat ,ha-
lalat”.

Az MPI/FT ezzel ellentétben olcs6 redundans rend-
szerelemeket alkalmaz, a hibavaldszinlséget a par-
huzamos nMR mdddal prébalja csékkenteni. Sajnos ez
a megoldas a tidlzottan nagy haldzatterheléssel jar,
ezért nem igazan alkalmas arra, hogy nagy szamité-
gépflrtdn hasznaljuk.

Irodalom

[1] Nemzeti Informacios Infrastruktira Fejlesztési (NIIF)
Program Szuperszamitégép Kézpontjanak honlapja,
http://www.iif.hu/szuper/

[2] TLTP High Performance Computing Courseware,
High Performance Computing Consortium,
http://www.cs.ncl.ac.uk/old/modules/2002-03/
¢sc305/TLTP_HPC_Course/

[3] HP MPI User’s Guide,

National Center for Supercomputing Applications,
http://archive.ncsa.uiuc.edu/SCD/Hardware/
CommonDoc/HP/MPI/1_intro.html

[4] C. J. Beckmann, D. D. McManus, G. Cybenko:
"Horizons in scientific and distributed Computing”,
COMPUTING IN SCIENCE & ENGINEERING,
January-February 1999, pp.23-30.

[5] ISO 7498, Information Processing Systems —

Open System Interconnection — Basic Reference Model,

International Standards Organization, Geneva, 1984.
[6] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali,

G. Fedak, C. Germain, Th. Herault, P. Lemarinier,

O. Lodygensky, F. Magniette, V. Neri, A. Selikhov:

"MPICH-V: Toward a scalable fault tolerant MPI

for Volatile nodes”, SC2002

[7] R. Batchu, Jothi P. Neelamegam, Z. Cui, M. Beddhu,
A. Skjellum, Y. Dandass, M. Apte:

"MPI/FTTM: Architecture and Taxonomies for
Fault-Tolerant, Message-Passing Middleware
for Performance-Portable Paralell Computing”,
DSM 2001, May 2001, pp.26-33.

19

