
1. Elôszó

A protokollok szabványhoz való hûségének, vagyis kon-
formanciájának vizsgálatára alkalmazott módszerek ko-
rábban nem tették lehetôvé hálózati forgalom megfi-
gyelésére kifejlesztett, illetve még fejlesztés alatt álló
eszközök vizsgálatát. A kidolgozott módszerrel, az alap-
vetôen konformancia vizsgálatra használt TTCN (Testing
and Test Control Notation) tesztkörnyezettel lehetôvé
válik a forgalom-analizátor szoftver mûködésének ellen-
ôrzése.

Az általunk elkészített rutinok lehetôvé teszik az
analizátor automatizált és központosított tesztelését. A
kész tesztkészlet a vizsgálati módszer moduláris fel-
építése miatt egyszerûen átalakítható és alkalmazható
más forgalom-analizátor megoldások vizsgálatára is.

2. Hálózati forgalom-analizátorok

A hálózati forgalom-analizátor általánosságban a háló-
zati forgalmat megfigyelô olyan egység, amely egyúttal
rekonstruálja és értelmezi a protokollok üzeneteit, azo-
kat is, melyeket alacsonyabb szinten esetleg több cso-
magban szállíthatunk. A forgalom-analizátorok ôsének
a korai hálózatfelderítô-alkalmazásokat tekinthetjük,
amelyek ICMP üzenetek periodikus küldésével végez-
ték a hálózat topológiájának felderítését, majd az így
kapott eredményt ábrázolták valamilyen grafikus formá-
ban. A legkorábbi megvalósítások a robusztusságukól
híres VAX/VMS rendszereken jelentek meg. Napjaink-
ban a hálózat-felügyeletben nagy szerepet kap a fel-
használók aktivitásának megfigyelése, a túlterhelések
és az illegális használat megakadályozása, valamint az
illetéktelen behatolók felfedése (intrusion detection) is.

Egy hálózati menedzsment rendszer több, a vezér-
lést és a menedzsmentet megvalósító komponensbôl
áll. Általában tartozik hozzá egy, a hálózat felépítését
megjelenítô grafikus elem, valamint egy valós idejû meg-

figyelô és jelentéskészítô eszköz. A legfontosabb funk-
ciói közé tartoznak a konfigurálás, a hibakezelés, a tel-
jesítményt befolyásoló, valamint biztonsági beállítások.
Ezen kívül általában rendelkezik valamilyen hálózat-
tervezést segítô eszközzel is.

A forgalom megjeleníthetô valós idôben vagy utó-
lag, esetleg hisztogram formájában. A hisztogramok raj-
zolása a leggyakrabban a TCP, UDP csatlakozási pon-
tok (rendszer port) figyelésén alapszik, esetleg külön ki-
térve az ICMP üzenetek különbözô típusaira. A megje-
lenítés kiterjedhet például adott protokollra vonatkozó
meghibásodási százalékra, míg a megjelenítendô infor-
máció általában lehet bájt vagy csomag alapú. A hirde-
tési, valamint csoportcímû (broadcast, multicast) csoma-
gok és az elveszett csomagok becsült száma is fontos pa-
raméter. A hibás csomagok esetében elemzésre kerül-
het a hiba oka, úgy mint CRC ellenôrzô-kód hibák száma,
csonkolt csomagok, túlméretezett csomagok, ütközések
és a helyes sorrendben bekövetkezô hibák száma.

A megfigyelés idôtartamának megválasztása is kö-
rültekintést igényel. A túl hosszú megfigyelési idôtartam
képes kiátlagolni bizonyos mûködési rendellenessége-
ket, így ez feltétlenül kerülendô. Általános esetben az
egy órás ciklusok megfelelôek [1]. A kihasználtság és a
késleltetés változása feltétlenül nyomon követendô. Hir-
telen kiugró értékek általában egy kezdôdô hálózati
probléma jelei lehetnek, ilyen baljós jelenség lehet a
csomagvesztés és a vonali hibák megnövekedése, a
késleltetés hullámzása vagy a megszaporodott útválasz-
tási forgalom.

A terhelési profil mérés a hálózat hosszú távú meg-
figyelését igényli. A hálózat felügyeletét végzôk segít-
ségével képet alkothatnak nemcsak az egyes végpon-
tok a hálózatra gyakorolt hatásról, hanem arról is, hogy
az egyes felhasználói programok a terhelés hány szá-
zalékát okozzák, és ez a terhelés hogyan oszlik el egy
hosszabb idôintervallum alatt. Hasznos lehet nyomon
követni, például az Ethernet vagy más technológián ala-
puló hálózat kihasználtságának átlag- és csúcsértékét

LIX. ÉVFOLYAM 2004/3 7

Konformancia vizsgálati eszközök
forgalom-analizátor vizsgálathoz
CSORBA J. MÁTÉ, PALUGYAI SÁNDOR, DR. MISKOLCZI JÁNOS

Ericsson Magyarország Konformancia Laboratórium

mate.csorba@eth.ericsson.se

Kulcsszavak: megbízhatóság, alkalmazási feltételek, optimalizálás

Az IP alapú hálózatok korábban elképzelhetetlen méretekben jelennek mindennapjainkban. Ezzel egyidejûleg a hang, videó és

egyéb, ez idáig dedikált hálózatokat használó adatok is egyre inkább az Internet Protokollt alkalmazzák. Mindennek következ-

tében lényeges a hálózatok minôségi paramétereinek állandó figyelemmel kísérése. Hálózati eszközök és komplex távközlési

rendszerek fejlesztése közben elengedhetetlen a hálózat teljesítményének, a szolgáltatások minôségének folyamatos nyomon

követése. E mellett a hálózatok üzemeltetése, karbantartása és az üzemzavarok gyors elhárítása is igényli a forgalom üzem

közbeni megfigyelését. Erre a problémára kívánnak megoldást nyújtani a hálózati forgalom-analizátorok.

Reviewed

is. A legtöbb esetben ezeket a paramétereket, vagy
egyéb hibajelenségeket figyelô automatikus riasztások
beállítása is lehetséges.

A forgalom-analizátorok döntô többsége a valós ide-
jû adatokat az Ethernet kártya promiscuous üzemmód-
ba kapcsolásával a helyi hálózatból nyeri. Ebben az
üzemmódban a kártya gyakorlatilag megkerüli az Ether-
net-címzést, ugyanis beolvassa az összes csomagot a
hálózatról, nemcsak a közvetlenül neki címzetteket. An-
nak érdekében, hogy ez mûködhessen és megfelelô
sebességet produkáljon, általában elôre le kell foglalni
egy bizonyos részt a memóriából a pufferelés számára.

Az Ethernet-kártya mindent beolvasó üzemmódba
kapcsolása a forgalom-analizátort futtató gép mûködé-
sét némiképp lassíthatja, fôleg abban az esetben, ha
egy általános célú számítógéprôl van szó és nem egy
céleszközrôl. Egy átlagos PC-s hálózati kártya a teljes
mértékben leterhelt hálózatról nem képes minden cso-
magot beolvasni. Különösen ez a helyzet, ha a csoma-
gok követési ideje rendkívül kicsi (back-to-back bursts)
[2].

A feldolgozási idôt természetesen nagyban befolyá-
solhatja a megfigyelni kívánt forgalom nagysága. Így
megkülönböztetésre szorulnak a valós idejû forgalmat
analizáló, illetve a késleltetett (off-line) feldolgozást vég-
zô eszközök. Létezik különálló, speciális kártyát használó
megoldás is forgalom-analizátorra (EtherMeter), bár ez
napjainkban már nem túl elterjedt megoldás.

Egy protokoll analizátor segítségével a felhasználó
számára lehetôvé válik a hálózaton keresztül haladó
csomag vizsgálata forrás- és célcím, protokoll, alkalma-
zás, bitminta, csomagméret s egyéb logikai változó alap-
ján. A legtöbb esetben állítható az analizátor mûködé-
séhez szükséges néhány paraméter, például a puffer-
tár mérete vagy a csomagok felszabdalásának lehetô-
sége a jobb memória-kihasználás érdekében. Általában
a csomagok megjelenítése során is választhatunk a
logikai és a hexadecimális nézet között (például a jól
ismert EtheReal esetében [3]). Néhány szoftver eseté-
ben a hibakeresést támogató külön modulokat is hasz-
nálhatunk, és a csomagok vizsgálatához szûrôket is al-
kalmazhatunk. Ezekkel kapcsolatban fontos, hogy azok
alkalmazhatók-e a valós idôben megfigyelt hálózati for-
galomra, vagy csak egy elôre rögzített adathalmazra.

Az analizátor szoftvereket megkülönböztethetjük ab-
ból a szempontból is, hogy a protokoll-rétegeket milyen
mélységig képesek dekódolni. Esetleg mind a hét réte-
get vizsgálhatjuk a segítségükkel, vagy csak egy bizo-
nyos részét. Létezik olyan megvalósítás is, melynek a
képességeit a felhasználó is bôvítheti a saját maga ál-
tal írt protokollértelmezô modulokkal (kitûnô példa erre
a lengyel fejlesztésû ANASIL elnevezésû analizátor [4]).

A hálózati forgalom bináris tároláskor fontos a nagy-
pontosságú idôbélyegek alkalmazása a rekonstruálha-
tósághoz, kiváltképp fontos ez hosszú idôtartamokat
átölelô megfigyeléseknél, ahol a hálózat monitorozása
akár több mint 24 órán keresztül is folyhat.

Hasznos lehet az összegyûjtött adathalmaz hordoz-
hatósága, hogy a megfigyelés során összegyûjtött ada-

tokat egy általános táblázat- és/vagy adatbázis-keze-
lôvel, esetleg grafikonszerkesztôvel is meg lehessen
jeleníteni.

3. A Moniq forgalom-analizátor

3.1. Általános tulajdonságok

Vizsgálatunk tárgyát az Ericsson által fejlesztett, Moniq
nevû szoftver képezte, amely egy professzionális, pasz-
szív hálózat-analizátor. A forgalmat az IP réteg szintjén
vizsgálja, elsôsorban a csomagkapcsolt mobil hálóza-
tok szolgáltatásainak minôségét biztosítandó. A fejlesz-
tésekor a mobil adathálózatok intelligens, végponttól-
végpontig terjedô teljesítmény menedzselését kívánták
megoldani, mivel a mobil hálózatok (GPRS, UMTS) mi-
nôségbiztosítása és felügyelete sürgetô probléma.

A Moniq használata nem igényel speciális hardvert,
akár egy közönséges PC-re telepítve csatlakoztatható
a megfigyelni kívánt hálózathoz. A szoftver architektú-
rája lehetôvé teszi a TCP/IP struktúra elemzését statisz-
tikus alapokon. Nagysebességû gerinchálózatok vizs-
gálatára is alkalmazható. Lehetôség van Gigabites
sebességtartományban mûködô hálózatok megfigye-
lésére is megfelelô hardver csatlakoztatásával.

A statisztikák létrehozásakor az elsôdleges szem-
pont, hogy minél teljesebb képet lehessen kapni a vég-
felhasználó által érzékelt szolgáltatás-minôségrôl. Az
analizátor számos protokoll üzeneteit képes felismerni
és feldolgozni, ide értve a következôket: TCP, UDP,
ICMP, DNS, RTP, HTTP, FTP, Telnet, SMTP, POP3,
IMAP4, WAP, RADIUS. A statisztikák egyrészt lefedik a
hálózat teljesítmény-mutatóit, másrészt a felhasználói
szint is megfigyelhetô és kiértékelhetô. A statisztikákat
készítô és analizáló képességek köre folyamatosan
bôvül, ahogy a fejlesztés halad.

A végponttól-végpontig kitétel ebben az esetben a
mobil-terminál és a kiszolgáló közti útvonalat jelenti,
vagyis a szolgáltatás-minôséget itt a felhasználó szem-
pontjából elemzi a szoftver. Mûködése passzív, a mé-
réshez külön forgalmat nem hoz létre, csupán a háló-
zatot használó elôfizetôk adatátvitelére koncentrál.

A létrehozott statisztikák finomsága változtatható,
akár a csomagszintig. A kapott adatok alapján követ-
keztethetünk a forgalom összetételére, és elemezhet-
jük a hálózatban kialakuló tendenciákat. Felhasználói
szintû problémák megoldására szûkíthetô a megfigyelt
tartomány. Megfigyelési pont több helyen is létesíthetô,
miközben a statisztikai adatbázist egy helyen tárolják,
így könnyen elérhetô, és a hálózat teljesítménye, vala-
mint a tendenciák nyomon követhetôk. Ezzel a mód-
szerrel megfigyelhetô például egy nagy léptékû átkon-
figurálás hatása a hálózatra.

3.2. A szoftver felépítése

A szoftver igazi erôssége a hálózat teljesítménymu-
tatóinak teljes körû felmérésében, az ok-okozati össze-
függések felderítésében, a hálózat tervezés, üzemel-

HÍRADÁSTECHNIKA

8 LIX. ÉVFOLYAM 2004/3

tetés támogatásában rejlik. Ehhez többféle statisztikát
készít, példaképpen említve néhányat: a forgalom el-
oszlása protokollok szerint, hálózati elakadást jelzô
üzenetek (pl. ICMP unreachable) aránya, tranzakciók
száma és idôbeli eloszlása, csomagok méretének el-
oszlása és így tovább.

Az alkalmazás moduláris jellegébôl adódóan több
részbôl épül fel. A legfontosabbnak tekinthetô részek a
következôk voltak:

• Moniqdump – a forgalom rögzítéséhez;
• Moniqparse – a csomagok elemzéséhez;
• ReadBin – az eredmények ember által olvasható

formába öntéséhez.
A mûködés elsô lépcsôjeként létrejön az úgyneve-

zett forgalom (trace) állomány, amely tartalmazza a meg-
figyelés alatt a hálózaton áthaladt csomagokat. Ennek
az állománynak több megjelenési formáját is alkalmaz-
hatjuk. A legegyszerûbb, ha a Unix alapú operációs
rendszerek részét képezô tcpdump programot használ-
va készítjük el ezt az állományt. Ennél kifinomultabb
megoldást jelent a szoftver részét képezô Moniqdump
program használata, amely a forgalom állomány elké-
szítése közben titkosítja az elôfizetôi adatokat és belsô
IP címeket, úgy, hogy ez az adatok késôbbi feldolgo-
zását nem befolyásolja. A Moniqdump bemenete lehet
a mûködô hálózat, de képes egy elôre elkészített for-
galom állományt is átalakítani. Annak érdekében, hogy
egy hosszabb megfigyelést követôen is kezelhetô ma-
radjon az állomány mérete, a csomagok fejrészét köve-
tô adattartalom tetszôleges mértékben leválasztható,
azaz nem szükséges teljes csomagokat eltárolni, a ké-
sôbbi kiértékelést ez nem befolyásolja. Az adattartalom
leválasztásának helye azért kell, hogy változtatható le-
gyen, mivel különbözô protokollok, bizonyos esetek-
ben további hosszú fejléceket helyezhetnek el a háló-
zati réteg adatait követôen. (Kitûnô példa erre a WAP
protokoll, mely az UDP fejléc után következô adatrész-
be helyezi el fejléc-információit, idônként a többi IP pro-
tokolltól eltérôen rendkívül hosszan.)

A tárolt forgalmat feldolgozható formába a Moniq-
parse program alakítja, melynek a kimenete több biná-
ris napló állomány. Tartalmuk röviden:

• Státusz állomány;
Valós idejû mérésnél a mérésre vonatkozó adatokat
tárolja, mint például idôbélyegek, aktuális idôbeli fel-
bontás.
• Rövid távú globális statisztika;
Tartalma a halmozódó forgalmi adatok kis részletes-
séggel és nagy idôléptékben.
• Hosszú távú globális statisztika;
Ebben az állományban nagyon részletesen, de kis
idôbeli felbontással tárolódnak az adatok.
• Tranzakciók naplója;
Minden kliens-szerver közti adatátvitelt tartalmaz. Új
bejegyzés akkor kerül bele, amikor egy tranzakció le-
zárul.
• Felhasználói kapcsolatokat tároló napló állomány;
Bejegyzést tartalmaz minden lezárult felhasználói kap-
csolatról.

• Egy perces felhasználói kapcsolat napló;
A felhasználók által érzékelt átviteli kapacitás becslé-
sére szolgáló statisztikákat tartalmaz.
• Tranzakció számláló napló állomány;
Tartalma az egy idôegységre esô tranzakciók száma.
• Felhasználói kapcsolatokat számláló állomány;
Hasonlóan az elôzô állományhoz, az idôegységre esô
kapcsolatok számát naplózza.

A Moniqparse által elôállított állományokból prog-
ram modulok segítségével kinyert különbözô statiszti-
kák jeleníthetôk meg egy kliens-szerver kapcsolaton
keresztül. A felhasználó gépén futó grafikus felhaszná-
lói felületen (GUI) láthatók a különbözô statisztikai elem-
zések eredményei. (A grafikus felületen keresztüli fel-
használást a továbbiakban nem részletezzük, mivel an-
nak tesztelése nem tartozott a feladataink közé.)

Az adatok kinyerésének másik módja a ReadBin
program használata, melynek segítségével a bináris ál-
lományokból lekérdezéseket hajthatunk végre, ame-
lyek eredményét szöveges kimenetként kapjuk. A prog-
ram kimenetét parancssori kapcsolók használatával
formálhatjuk. Így lehetséges szûrési feltételek beállítá-
sa, valamint azt is szabályozhatjuk, hogy az adatbázis
mely mezôire vagyunk kíváncsiak.

4. A TTCN-3 nyelv

A TTCN-3 egy konformancia vizsgálatokra általánosan
használt, magasszintû programozási nyelv (valójában
nincs korlátozva kizárólag konformancia tesztelésre).
Vizsgálható a segítségével együttmûködési képesség,
robosztusság, végezhetô rendszer- és integrált teszt. A
nyelv általában tesztelési metódusoktól és protokollok-
tól független tesztkészletek specifikálására hivatott. Mind-
ezen tulajdonságok mellett alkalmas távvezérelt tesz-
tek lebonyolítására is, amelyekben az IUT irányítása is
TTCN program segítségével történik. A felhasználás
más egyéb jellemzô területei: a szolgáltatások tesztelé-
se, CORBA alapú platformok, API-k tesztelése [5].

A TTCN-3 fordító protokoll független C++ forráskó-
dot generál. Vagyis szükség van valamilyen kiegészí-
tésre, ami megteremti a kapcsolatot a végrehajtható
tesztkészlet és a tesztelendô között. Ez a tesztport, ami
egy C++ nyelven írt szoftver-könyvtár. A teszt-csatoló
rutin (tesztport) egy adott protokoll üzeneteinek, cso-
magjainak kezeléséhez szükséges, így egy adott pro-
tokoll minden verziójához külön meg kell írni. Ehhez
nyújt némi segítséget, hogy a TTCN-3 fordító segítsé-
gével elô lehet állítani a tesztport alapját képezô, C++
sablont, amely definiálja a szükséges függvényeket,
azonban a végleges kódot a felhasználónak kell meg-
írnia. A tesztport gyakorlatilag egy végtelen FIFO sorral
modellezhetô, amely egész addig tárolja a beérkezô
üzeneteket, míg a TTCN komponens, melyhez tartozik,
ki nem olvassa azokat. Természetesen egy TTCN kom-
ponens több tesztport felett is rendelkezhet, ezt a teszt-
környezet ki is használja [6].

Konformancia vizsgálati eszközök...

LIX. ÉVFOLYAM 2004/3 9

A hálózatba kapcsolt tesztelést végzô számítógé-
pek futtatás alatti viselkedése tesztesetek (Test Case)
formájában kerül kifejezésre. A nyelv hatékonyan tudja
kezelni a különbözô viselkedési alternatívákat, úgy, mint
különbözô adatok fogadása a tesztportokon keresztül,
idôzítô események bekövetkezése stb. A tesztesetek-
ben kerül sor az eredményt jelentô ítéletek meghoza-
talára, ezek mellett a sokszor rendkívül hasznos napló-
állomány készítésre is lehetôség van.

5. A Moniq vizsgálata

A Moniq vizsgálatához a konformancia vizsgálatok kö-
rében hagyományosnak tekinthetô távoli tesztelési el-
rendezést alkalmaztuk, némileg módosítva azt. A tesz-
ter oldal a konformancia vizsgálati elrendezéseknek meg-
felelôen mindig egy TTCN nyelvû program volt. Azon-
ban a vizsgált rendszer oldalán a legtöbbször szintén
egy TTCN komponens állt vagy pedig egy valódi kiszol-
gáló szoftver, míg az IUT a forgalom szempontjából
passzív hálózati analizátor volt (1. ábra).

A kliens és a kiszolgáló megvalósítása nagyban ha-
sonlít egy konformancia teszt kifejlesztéséhez, mivel a
közöttük lejátszódó kommunikációt a vonatkozó ajánlá-
sok (RFC-k) alapján kell elkészíteni. Mindemellett szük-
ség van az ajánlástól eltérô, hibás vizsgálati sorozatok
elôállítására is (hasonlóan a konformancia vizsgálatok-
hoz).

A szimulációra a kiszolgáló TTCN segítségével azért
volt szükség, mert helyes és helytelen vizsgálati soro-
zatokat egyaránt elô kellett állítani (mivel az IUT-nek
mindkét esetben helyes analízissel kell szolgálnia). A
fentiekbôl látható, hogy itt egy speciális konformancia
vizsgálati módszerrel állunk szemben: a teszter úgy vi-
selkedik, mintha a kiszolgálót vizsgálná helyes és hely-
telen üzenetekkel, s ez alatt a Moniq által szolgáltatott
forgalmi adatokat ellenôrzi.

A cél egy olyan minôsítô rendszer kialakítása volt,
amely a valódi használat körülményeit szimulálva, auto-
matizáltan teszi lehetôvé a Moniq legfontosabb modul-
jainak (Moniqdump, Moniqparse, ReadBin) ellenôrzé-
sét. A vizsgálat megvalósításakor tehát alapvetôen két

funkciót kellett megkülönböztetnünk egymástól. Egy-
részt ki kellett alakítanunk egy környezetet, melynek
segítségével a Moniq automatikusan vezérelhetôvé vált,
mintha egy operátor ténylegesen használná [7]. Más-
részt létre kellett hoznunk egy speciális forgalmat a há-
lózaton, amely a szabványoknak megfelelôen szimulál-
ta a vizsgált protokoll mûködését. Ezek után rendelke-
zésünkre állt egy jól definiált forgalom egy szeparált há-
lózaton, tehát a tesztek befejezô lépése a kiértékelés
kellett legyen.

A kiértékelés során annak tudatában, hogy mi zaj-
lott le a hálózaton, meg kellett nézni, hogy a Moniq he-
lyesen értékelte-e a hálózaton történteket. Ezeket a lé-
péseket láthatjuk a 2. ábrán, amely magába foglalja a
Moniq elindítását a tesztforgalom elemzéséhez, a Moniq
leállítását, a mért eredmények tárolását, illetve annak
kiértékelését, valamint a mérés folyamatáról egy dátum-
mal és a Moniq-ra vonatkozó azonosító információkkal
rendelkezô adatállomány elôállítását.

A teszteket tesztcélok formájában dokumentáltuk,
szabványos alakban megadva a teszt nevét, egy rövid
leírást, utalva az adatbázis mezejére, amit vizsgálunk
és egy bôvebb leírást a mûködésrôl. A dokumentálást
elôsegítendô minden egyes teszt futása után három
állományt tárol a tesztrendszer: egyrészt a TTCN pro-
gram futásakor keletkezô naplót (amely a mérés során
bekövetkezô összes eseményrôl tartalmaz bejegyzést),
másrészt a Moniq által felvett, hálózati forgalmat tároló
bináris állományt, valamint a Moniq szöveges kimene-
tét.

6. A rendszer vizsgálata

6.1. Vizsgálati környezet

A forgalom-analizátor vizsgálatának alapját a támo-
gatott protokollok mûködésének szimulációja képezte.
Mivel a vizsgált protokollok mûködése kliens-kiszolgáló
elrendezésben folyik, ki kellett alakítani néhány kiszol-
gálót és a felhasználói oldalt szimuláló kliens gépeket.
Az elsô lépés tehát a vizsgáló hálózat kiépítése, majd
azt követôen a megfelelô szoftverek telepítése.

HÍRADÁSTECHNIKA

10 LIX. ÉVFOLYAM 2004/3

1. ábra A tesztrendszer és az IUT viszonya

2. ábra A tesztprogram mûködése

Az 3. ábrán láthatóan két alhálózatot alakítottunk ki,
melyek egymástól elkülönítve mûködtek. Szükség volt
egy könnyen kézben tartható forgalmú ellenôrzô-alhá-
lózatra, melyen minden automatikus és/vagy felesleges
kommunikációt letiltottunk, hogy kizárólag a tesztek
által elôállított csomagok használhassák.

A második, menedzsment hálózat (M. LAN) a tesztek
mûködéséhez szükséges vezérlô üzenetek és a mun-
kához szükséges egyéb forgalom lebonyolítására szol-
gált. A Moniqot vezérlése teljes egészében a hálóza-
ton keresztül történt, vagyis tulajdonképpen a Moniq-ot
kezelô felhasználó parancsait is egy TTCN program-
részlet valósította meg.

6.2. A Moniq forgalom-analizátor vizsgálata

Méréseink megvalósítása a rendelkezésre álló háló-
zaton a 4. ábrán látható. A példában a teszt(ek) futá-
sának koordinálását és kiértékelését a Client2 névvel
jelzett gép végzi. A teszt indításakor jelez a kiszolgáló
oldalt megvalósító Server2 gépnek, majd elindítja a
vizsgált forgalom-analizátort. Ezt követôen az IUT már
folyamatosan monitorozza a Teszt LAN-t, miközben a
vizsgáló program elkezd egy adott protokollnak meg-
felelôen kommunikálni a kiszolgálóval (például végre-

hajt egy FTP letöltést vagy egy levélküldést az SMTP
protokollnak megfelelôen). Fontos, hogy minden vezér-
lési információ az elkülönített menedzsment hálózaton
bonyolódik, így a forgalom-analizátor ezeket a csoma-
gokat nem érzékeli. Amikor a kívánt mûködés szimulá-
ciója véget ér, az IUT által mért adatok begyûjtése és
kiértékelése szintén automatikusan történik, ismét az
M. LAN igénybevételével.

6.3. Kommunikáció
a csatlakozási pontokon keresztül

A TTCN-3 kódnak szüksége van egy C++ nyelven
írt csatoló rutinra (port-ra), amely lehetôvé teszi számá-
ra a kommunikációt a vizsgálandó objektummal. A mé-
rési elrendezésünkben három különbözô típusú csatoló
rutin fordult elô.

A STORE csatoló rutin
Szükség volt elôször is egy speciális csatoló rutinra

a mért adatok átmeneti tárolásához és kiértékelésé-
hez. Ez a csatoló rutin a STORE_Port nevet kapta. A
feladatai közé tartozott a Moniq által mért adatok és a
számított, tehát az elvileg helyes adatok adatbázissze-
rû tárolása egy-egy teszteset futása során. A csatoló
rutin ezt az igen egyszerû adatbázist a memóriában tá-
rolta, tehát az csak a teszt futása során volt hozzáfér-
hetô, ami elegendô is volt, hiszen csupán a tesztek ki-
értékelésénél volt rá szükség. Az adatbázis felépítése
az 1. táblázatban látható.

1. táblázat A mérés kiértékeléséhez használt adatbázis
rekordjainak felépítése

A csatoló rutinon keresztül ugyanúgy lehetséges volt
az üzenetküldés és -fogadás, mint egy hagyományos
kommunikációs ponton keresztül. Azzal a különbség-
gel, hogy az üzenetek nem a hálózatra kerültek ki, ha-

nem a memóriában található adatbázissal lehetett
kommunikálni a csatlakozáson keresztül. Az adat-
bázis elemeinek három lehetséges típusa volt:

– egész szám, különbözô adatok,
például csomagok számlálására;

– lebegôpontos szám, jellegzetesen idô
(másodperc alapú) mérésére;

– szöveg,
általában státuszinformációk tárolására.

Egy adat lekérése tehát a következô informá-
ciók megadásával volt lehetséges: tranzakció
sorszáma (TNO), ezzel például egy TCP kapcso-
latot lehetett kiválasztani a monitor által felvett
több kapcsolat közül. Egy kapcsolathoz azonban
az analizátor több napló állományt is készíthe-

Konformancia vizsgálati eszközök...

LIX. ÉVFOLYAM 2004/3 11

3. ábra A teszthálózat

4. ábra A Moniq tesztelési lépéseinek megvalósítása

tett, tehát ki kell választani az adott kapcsolathoz tar-
tozó, a számunkra érdekes mezôt tároló naplót (SType).
Valamint természetesen meg kell adnunk, hogy név
szerint mely mezôre vagyunk kíváncsiak (Name). A
lekérdezés eredményeként a STORE_Port két értéket
ad vissza: a tesztprogram által helyesnek ítélt Data
mezôt és a Moniq által mért (Moniqdata) értéket. Ezt a
két értéket ezek után könnyedén össze lehet hasonlí-
tani.

A Telnet csatoló rutin
Ez a rutin (port) több helyen is rendkívül fontos sze-

repet tölt be. Az általunk írt TTCN függvény-gyûjtemény
e kommunikációs port használatával csatlakozik a for-
galom-analizátort futtató számítógéphez, és szabvá-
nyos Telnet kapcsolaton keresztül, egy valódi felhasz-
nálót szimulálva parancsokat ad ki a gépnek, és értel-
mezi a válaszokat.

A másik fontos felhasználása a vizsgáló sorozatok
elôállításában, vagyis a protokollok mûködésének szi-
mulálásában volt. Tekintve, hogy a POP3, IMAP és
SMTP protokollok nem alkalmaznak külön saját csomag-
formátumot, hanem egy TCP kapcsolat felett, karakte-
res alapon mûködnek.

A TCP csatoló rutin
A Telnet port-nál is alkalmazott stream-csatoló (stream

socket) egy alternatívája az úgynevezett datagram-csa-
toló (datagram socket), amely UDP kapcsolatok létreho-
zására használható, vagyis nem megbízható és nem
kapcsolat-orientált átvitelre.

Bizonyos teszteknél azonban nem alkalmazható sem
a stream, sem a datagram csatoló (socket). Ezekben
az esetekben a forgalom elôállításakor az alacsonyabb
rétegben lévô protokollokat is befolyásolni szeretnénk.
Erre például akkor lehet szükség, amikor olyan üzene-
teket szeretnénk elôállítani, amelyeket a rendelkezésre
álló kiszolgáló szoftverbôl csak nehezen vagy egyálta-
lán nem tudunk kisajtolni.

Egy konkrét példát említve: szükség volt a tesztelés
során olyan tesztesetre, mely különbözô mûködési fá-
zisokba juttatja az IMAP kiszolgálót, és megvizsgálja,
hogy a Moniq megfelelôen ismeri-e fel a kiszolgáló álla-
potát. Azt az állapotot azonban, amikor az IMAP kiszol-
gáló már nem tud több kapcsolatot fogadni, mert telí-
tett, és emiatt rögtön a TCP kapcsolat felépítése után

visszautasítja a klienst, a rendelkezésre álló erôforrá-
sokkal nehéz lett volna megvalósítani. A megoldást az
jelentette, hogy a protokoll mûködését alacsonyabb
szinten kellett modellezni.

Valamint nem lehetett használni a valódi kiszolgáló
szoftvert, így a mûködését egy TTCN programmal kel-
lett szimulálni. Ezen tényezôk miatt szükség volt az
úgynevezett raw socket használatára, az ezt használó
port pedig a TCP port nevet kapta. A tesztek között
voltak olyan alacsony szintû mérések is, mint például
egy adott protokollhoz tartozó átvitt bájtok összege
vagy csomagok száma, amelyekhez elkerülhetetlenül
egy alacsonyabb szinten dolgozó port-ot kellett hasz-
nálni.

A raw-csatolót (raw socket-et) használó kommuniká-
ciós port esetében a teljes csomag összeállításáról ne-
künk kell gondoskodni, vagyis minden protokoll-rétegre
a fizikai réteg felett oda kell figyelni. Tehát ezeknél a
teszteknél egy csomag a következôképpen nézett ki:
<Ethernet fejrész> <IP fejrész> <TCP fejrész> <TCP
adatrész>. A raw socket használatának hátránya, hogy
az így modellezett kapcsolatok esetében a szállítási
protokoll mûködését is teljes egészében meg kell való-
sítani TTCN-bôl, kezdve a kapcsolat-felépítéstôl a be-
zárásáig, a TCP szabványnak megfelelôen.

6.4. A Moniq tesztelését végzô TTCN rutinok

A Moniq szoftver vezérlése és méréseinek kiértéke-
lése egységesen történt. A Moniq-ot kezelô segédfügg-
vényeken kívül a legfôbb funkciókat a következô négy
elem tartalmazta.

A moniq_start függvény
A függvény meghívása után bejelentkezik a teszt-

géprôl az IUT-re (Moniq) és ellenôrzi, hogy fut-e a vizsgált
forgalom-analizátor valamelyik részegysége. Erre azért
van szükség, mivel a szoftver ellenôrzését egyszerre
többen is végezhetik, ugyanezt a függvénykönyvtárat
(MoniqFunctions) használva. Azonban a mérések tisz-
taságának érdekében a moniq_start függvény egyszer-
re csak egy virtuális felhasználót engedélyez az IUT-n.
Abban az esetben, ha már valaki más is használja a
forgalom-analizátort, a teszt futása félbeszakad.

Amint a szükséges erôforrások rendelkezésre áll-
nak, a függvény elindítja a hálózat monitorozását vég-
zô moniqdump programot, de hibakereséshez segít-
ségül tudja hívni egyúttal a Linux disztribúció részét
képezô tcpdump programot is.

A moniq_end függvény
A moniq_end függvény meghívására akkor kerülhet

sor, ha a vizsgáló sorozatot már kiküldtük a hálózatra,
vagyis a forgalom-analizátornak már nem szükséges
figyelnie a hálózatot. Ekkor a függvény leállítja Telnet
kapcsolaton keresztül a monitorozást, és meghívja a
csomagok elemzését végzô moniqparse programot, fi-
gyelembe véve a felhasználó által használt konfigurá-
ciós állományt.

HÍRADÁSTECHNIKA

12 LIX. ÉVFOLYAM 2004/3

5. ábra A STORE-port mûködése

A moniq_result_get függvény
Ez a komponens a ReadBin program meghívásával

teszi lehetôvé a moniqparse segítségével létrehozott
bináris napló állományok átalakítását. Természetesen
ebben az esetben is a tesztelést végzô pontosan beál-
líthatja a ReadBin program paramétereit. Az átalakítás
eredményeként elôálló szöveges kimenetet a füg-
gvény a STORE_Port-on keresztül tárolja a kiértékelés
idejére, valamint szöveges állományként is menti egy
megadott könyvtárba a központi kiszolgálón. Ezen kí-
vül a hálózat monitorozása során létrejött bináris állo-
mányt is ugyanazon könyvtárba tárolja.

A moniq_results függvény
Amint a moniq_result_get függvény tárolta szöveg-

es formában az adott teszt szempontjából érdekes
napló állományt, az eredményeket a moniq_results se-
gítségével értékeli.

A függvény két értéket kérdez le a STORE_Port-on
tárolt adatbázisból. A kiolvasott két érték a tesztelô pro-
gram által helyesnek ítélt és a Moniq által mért adat. A
függvény bemeneti paraméterei a következôk: a vizs-
gált adatbázismezô neve, a mezôt tartalmazó statiszti-
ka neve, egy tranzakció sorszám és az adatbázismezô

típusa, mely négyféle lehet. A teszt ezek után átment
(pass) ítélettel zárul, ha a kapott két érték megegyezik.
Amennyiben az adat típusa egész szám, valós szám
vagy szöveg, teljes egyezôséget vizsgál, ha a típusa
idô, 10 ms-os pontossággal értékel ki a program.

7. A mérések értékelése

A mérési elrendezés kidolgozásánál
fontos szempont, hogy a vizsgálati
módszer rugalmas, könnyen átalakít-
ható legyen. Annál is inkább, mivel a
Moniq forgalom-analizátor szoftver
fejlesztése a teszteléssel egyidejûleg
folyt, így többször szükség volt a tesz-
telési eljárás kis mértékû átalakításá-
ra. Éppen ezért a forgalom-analizá-
tor kezelését végzô, tehát a Moniq-
specifikus rutinokat jól elkülöníthetôen
kellett kialakítani.

Ennek a moduláris felépítésnek kö-
szönhetôen egy másik forgalom-anali-
zátor megvalósítás tesztelése sem igé-
nyelne óriási beavatkozást a tesztrend-
szerbe, mivel csak a Moniq specifikus
részek cseréjére lenne szükség. A tesz-
teléshez használt protokollok körét a
modularitásból adódóan úgyszintén
könnyedén lehet bôvíteni.

A kidolgozott módszer mûködésé-
bôl látható, hogy a felhasznált kon-
formancia vizsgálati eszközök rugal-
masságuknak köszönhetôen más, a
konformancia vizsgálatoktól eltérô fel-
adatok megoldására is alkalmazha-
tók. A TTCN-3 nyelv használatával
olyan vizsgálatok is elvégezhetôek,

Konformancia vizsgálati eszközök...

LIX. ÉVFOLYAM 2004/3 13

6. ábra A moniq_results függvény mûködése

7. ábra A Moniq-ot kezelô függvények használata

melyek más módszerrel nem lehetségesek, például lo-
gikailag hibás vizsgálati sorozatok elôállítása vagy adott
értékû válaszidôk szimulálása.

A teljes tesztkészlet futtatására a vizsgált szoftver
minden újabb verziójának (build) létrejöttekor lehetô-
ség van. Ekkor az összes teszteset emberi beavatko-
zás nélküli futtatása után a tesztek által készített nap-
lóállományokból kiválaszthatók a hibás (fail) ítélettel
zárult tesztek. Ezután az ilyen naplók részletes elem-
zésével megtudható, hogy a kiértékelés során melyik
adatbázis mezô tartalmazott hibás értéket, illetve kö-
vetkeztethetünk a hiba okára is.

Amint a vizsgálat során egy hibára fény derül, az
azonnal hibajelentésként (Trouble Report) továbbít-
ható a fejlesztôkhöz, és a hiba akár már a következô
fejlesztôi változatban kiküszöbölhetô.

Irodalom

[1] Stine, R.: FYI on a Network Management Tool Catalog:
Tools for Monitoring and Debugging TCP/IP Internets
and Interconnected Devices [RFC1147]

[2] Bradner, S., McQuiad, J.: Benchmarking Methodology
for Network Interconnect Devices [RFC 2544]

[3] A GNU/GPL értelmében ingyen hozzáférhetô Ethereal
programcsomag weboldala: http://www.ethereal.com/

[4] A lengyel A plus C Ltd. által fejlesztett Anasil
programcsomag weboldala: http://www.anasil.net/

[5] HTE Online könyv:
Távközlô hálózatok és informatikai szolgáltatások

[6] Szabó, J.Z. (Ericsson Mo. Konformancia Laboratórium):
User Documentation for the TTCN-3 Test Executor

[7] Agilent Technologies:
Test Automation for Network Routing Devices
[Technical Report ; http://www.agilent.com]

HÍRADÁSTECHNIKA

14 LIX. ÉVFOLYAM 2004/3

HHHH íííí rrrreeee kkkk
Az Oracle a kaliforniai San Diegoban zajló Apps World konferenciáján több újdonságot jelentett be
termékeirôl, az alkalmazásfejlesztés legújabb irányairól és várható fejleményeirôl.
Az Oracle betekintést nyújtott új üzleti alkalmazásegyüttesének, az Oracle® E-Business Suite 11i.10 jel-
lemzôibe. A nemsokára megjelenô új változatban komoly továbbfejlesztéseket hajtottak verge az integ-
rációs rétegben, és jelentôsen bôvült az ágazatspecifikus üzleti folyamatokat támogató funkciók köre.
Az Oracle alkalmazásait használó szervezetek több mint 85 százaléka jelenleg az Oracle E-Business
Suite 11i verziót használja, így az ügyfelek többségének nem okoz majd gondot az áttérés a 11i.10-re.
Az új verzió az Open Applications Group (OAG) által definiált nyílt szabványú interfészeket is támogat-
ja, amelyek egységes szabványokat biztosítanak az üzleti alkalmazások integrálásához. A 11i.10 vál-
tozat több, mint 150 szabványos OAG üzleti objektumot támogat, amelyek például rögzítik, hogyan kell
definiálni egy beszerzési megrendelést.
Egy másik újdonsága az integrációs interfészek katalógusa, amely az Oracle E-Business Suite közzétett
API-jait írja le. Emellett az Oracle Application Server 10g képességeit is kihasználja az integrációhoz
más fejlesztôk alkalmazásaival és az üzleti partnerekkel.
Továbbfejlesztett automatizálási és felügyeleti szolgáltatások az E-Business Suite Outsourcing-ban. A
továbbfejlesztések megkönnyítik a rendszeradminisztrációt, automatizálják a szoftverfelügyelet egyes fon-
tos folyamatait, proaktív rendszermonitoringot biztosítanak, és csökkentik a karbantartási költségeket.
Az ügyfél változó üzleti követelményeinek rugalmas kiszolgálásához az Oracle egy- vagy többéves szer-
zôdéseket kínál 30 napos felmondással; az ügyfél megválaszthatja, hol üzemeljen a hardver, és a kihe-
lyezéses szolgáltatásokat az Oracle kínálatában szereplô bármely termékhez igénybe veheti.

A Linux World Konferencián bejelentett újdonságok három fô csoportba sorolhatók.
Az elsô az új generációs asztali technológiák, amelynek keretében megjelenik a Sun Java Desktop Sys-
tem új verzója Linuxon. Ebben bôvülnek a szoftver felügyeleti funkciói, valamint megjelenik egy új három-
dimenziós, Java alapú PC desktopfelület.
A második csoportba a vállalati szoftverek és hardverek sorolhatók: a Java Enterprise System, integrált
infrastruktúraszoftver-megoldás, és támogatni fogja a Linux operációs rendszert Intel Xeon rendsze-
reken és az AMD Opteron processzor alapú x86 szervereken is.
A harmadik csoportot a Linuxos fejlesztôeszközök képezik: a Sun bemutatott egy asztali megoldást,
amely a Sun új Java Studio Creatorát, egy egyszerûen használható Java-alkalmazáskészítôt. A Sun a
tervek szerint 2004 végéig fejlesztôeszközeinek teljes sorát megjelenteti Linuxra is.

