Haloézati protokollok biztonsagi tesztelése

LEcz BALAZS™, ZOMBIK LASZLO™ ™

* Budapesti Mlszaki és Gazdasagtudomanyi Egyetem, Tavkézlési és Médiainformatikai Tanszék,
lecz@alpha.tmit.bme.hu

** Ericsson Magyarorszag, BME-TMIT, laszlo.zombik@ericsson.com

Reviewed

Kulcsszavak: biztonsag, imprementaciok, forgalomelterelés, konformancia

A protokollok és implementacidik viselkedését tobb szempontbdl lehet vizsgalni, ezért igen sok tesztelési médszer létezik. A

kiinkben a protokollok megvaldsitasainak biztonsagi vizsgdlatara koncentralunk. Ismertetiink egy Uj, biztonsagi tesztelésre
alkalmazhaté mddszert, majd bemutatjuk alkalmazdsdnak lehet6ségeit. Véglil ismertetjiik az dltalunk megvaldsitott szoftver-
keretrendszert és bemutatunk néhany példat annak gyakorlati alkalmazasara.

1. Protokoll tesztelési modszerek

Informatikai és tavkézlési rendszereink mindennapos,
megbizhaté mikddése egyre jobban fligg a kommuni-
kacids protokollok és implementacioik stabilitasatél és
biztonsagatoél. Az infokommunikacids rendszereink al-
talanos biztonsaganak eléréséhez a protokolloknak
meg kell felelnilik bizonyos szintl biztonsagi elvarasok-
nak, melyek nagyban fliggenek az adott protokoll alka-
Imazasi teriiletétdl. Ezek teljesitéséhez a protokollokat
igen korultekint6en kell megtervezni és megvaldsitani.
az emberi hibaknak. Az implementacié soran tovabbi
veszélyforrasokat hozhatnak be a felhasznalt szoftver-
eszkdzok (példaul egy hibas fuggvény-kényvtar felhasz-
nalasakor a kényvtarban levé hibak 6roéklédhetnek). A
végtermeéket (protokoll specifikacié és kész termék) ezért
minden esetben meg kell vizsgalni.

A jelenlegi, tesztelésre alkalmas szoftver és hardver
eszkdz0Ok egy-egy 6 terliletet céloznak meg az alabbi-
ak kézll: konformancia, teljesitmény és biztonsag. Lé-
teznek eszkdzok, melyek a protokoll formalis leirasat ve-
szik alapul, mig mas eszkdz6k a megvaldsitast tesztelik
valds vagy emulalt kérnyezetben. A vizsgalat médszere
lehet formalis verifkaciod, szimulacié és a megvalositas
ellendrzése. A biztonsagi vizsgalatokhoz mind a harom
modszert alkalmazzak. Az aldbbiakban bemutatunk né-
hany példat ezekre.

1.1. Formalis protokoll verifikacid

A formalis protokoll verifikacio els6dleges célja, hogy
mar a tervezési fazisban visszacsatolast nydjtson. igy a
protokoll implementacidjanak elkészitése el6tt fény de-
rilhet a problémakra. Amennyiben a verifikacié hibat
mutat ki, vissza kell |épni a tervez6asztalhoz (WEP [5]).
Tovabbi alkalmazasként emlithet6 a mar meglévé pro-
tokollok megfelel6ségének vizsgalata: formalisan ellen-
drizhetd, hogy egy adott protokoll megfelel§-e egy bi-
zonyos célra (példaul biztositja-e az Gjrajatszas vagy a
lehallgatas elleni védelmet).

A protokollok teljesitményének, hibatlrésének és bi-
zonyos biztonsagi paraméterek vizsgalatara mar létez-
nek formalis médszerek. Mivel a formalis protokoll verifi-
kaciés mddszerek a protokollok leirdsat hasznaljak csak
fel, az implementacidkban jelentkezd hibak nem detek-
talhatok segitségiikkel. Sok esetben fordult mar el 6,
hogy egy protokollt a formalis ellenérzés soran bizton-
sagosnak mindsitettek, azonban az implementaciéba
keriilt programozasi hiba — ami amudgy a funkcionalitast
nem befolyasolta — biztonsagi szempontbdl végzetes-
nek bizonyult. Rontja a helyzetet tovabba, hogy egy for-
malis tesztelés soran biztonsagosnak nyilvanitott proto-
koll hamis biztonsagérzetet kelt a végfelhasznalékban.

A formalis ellen6rzéshez sziikséges az adott proto-
koll helyes és teljes formalis specifikacidja, melyet leg-
tobbsz6r az adott vizsgalo szoftver leirdnyelvén kell meg-
fogalmazni. llyen leiras elkészitése sok esetben igen
Osszetett és nagy szakértelmet igényl§ feladat. Ez a
folyamat is ki van téve az emberi hibaknak, igy eléfor-
dulhatnak hibas pozitiv és hibas negativ eredmények is.

A formalis médszerek legnagyobb hatranya, hogy a
vizsgalhatd protokollok halmazat erésen leszlikitik a ve-
rifikaciés eljarasok altal a protokollokkal szemben ta-
masztott eléfeltételek. Ezen megszoritasok sok létez6
és tervezett protokollt kizarnak a vizsgalhat6 protokol-
lok kérébdl. Tovabbi nehézséget jelent, hogy ezek az
algoritmusok nem minden esetben garantaljak a véges
futasid6t. A gyakorlatban alkalmazott, tébbnyire kom-
plex protokollok vizsgalatadhoz igen nagy szamitasi- és
mem@riakapacitasra van szlkség.

Megemlitiink néhany, biztonsagi szempontbdl fonto-
sabb, formalis ellenérzé szoftvert: FDR [11], Casper [9],
NRL Protocol Analyzer [10].

1.2. Szimulécio

A szimulaciés mddszerek igen elterjedtek, tavkozlési
protokollok teljesitmény-vizsgalatara alkalmazzak a leg-
gyakrabban (példaul, hogy egy adott protokoll eléggé
hatékony-e), azonban biztonsagi vizsgalatok elvégzé-
sére is haszanlhaték ezek a szimulaciés eszkdzok.

LIX. EVFOLYAM 2004/3

Halbzati protokollok biztonsagi tesztelése

A legismertebb haldzati protokoll-szimulacios szoft-
ver az NS2 [3]. Ezzel tdbbek kdztt szolgaltatasbénito,
tulterheléses tamadasokat is lehet szimulalni.

1.3. Protokoll implementéciok vizsgalata

Kilénbdz8 modszerek és eszkdzok léteznek a pro-
tokollok implementacidinak tesztelésére. Minden egyes
modszer a tulajdonsagok egy jél kérilhatarolhaté osz-
talyara 6sszpontosit. A protokollok megvalésitasat el-
lenérz6 szakemberek a konformanciat és az egyiitt-
mikddési képességet vizsgalé modszereket alkalmaz-
zak els6sorban. A hal6zatlizemelteték altal leggyakrab-
ban alkalmazott eszkdz6k a protokoll-analizatorok és a
behatolas-detektald rendszerek (Intrusion Detection
System — IDS).

A biztonsagi ellen6rz§ szoftvereket a halézatbizton-
sagi szakemberek és a rosszindulatd tamaddk egya-
rant hasznaljak. Ide sorolhatdk a kiilénb6z8 biztonsagi
letapogatok (security scanner), forgalom-generatorok
€s a biztonsagi réseket kihasznald programok (security
exploit).

Az alabbiakban néhany mondatban bemutatjuk az
eddig emlitett modszereket, valamint alkalmazhat6sa-
gukat a protokollok biztonsagi réseinek kimutatasaban.

Konformancia tesztelés: ezzel az eljarassal a pro-
tokoll megvalositasanak funkcionalis helyességét vizs-
galjuk. A teszt eredménye megmutatja, hogy az adott
implementacié a specifikacionak megfeleléen miikodik-
e. A tavkozlési ipar altal szorgalmazott trend a konfor-
mancia vizsgalat és szoftver-keretrendszerének szabva-
nyositasa felé mutat. Ennek egyik eredménye a TTCN3
[4]. A biztonsagi szempontbdl fontos hibak egy része
kimutathaté ezen mddszerek segitségével: a specifika-
cié félreértelmezésébdl, programmozasi hibakbdl adé-
do biztonsagi rések nagy része felfedezhetd ezzel az
eljarassal.

Egyittmiikodési képesség vizsgalat: ezek a mdd-
szerek a kilénbdz8 implementaciok egylttmdkddeési
képességét vizsgaljak. A vizsgalat eredménye egyedidil
azt mutatja meg, hogy a két megvaldsitas képes-e az
egyuttmdkddesre. Biztonsagi rések felfedezésére nem
alkalmas ez a modszer.

Teljesitmény vizsgalat: a teljesitményvizsgalat so-
ran az implementacioé viselkedését figyelik kilénbdz6
terhelési feltételek mellett. F6 alkalmazasa a kilénbdzé
implementaciok teljesit6képességének és hatékonysa-
ganak 6sszehasonlitasa, illetve a sz(k keresztmetsze-
tek felkutatasa. Ennek ellenére egy biztonsagi szem-
pontbdl fontos tulajdonsag vizsgalatara is hasznalha-
t6: segitségével kimutathatd, hogy a protokoll adott
esetben érzékeny-e a tulterheléses (Denial of Service
— DoS) tamadasokra, illetve hogy az ez elleni védeke-
zési modszer megfelel6en mdkddik-e.

Protokoll-analizatorok: céljuk, hogy valés id6ben
megfigyeljék a halézati forgalmat és el ére definialt sza-
balyok szerint analizaljak a csomagok tartalmat. Ezek a
szabalyok tartalmazhatnak protokoll adategységek ér-
telmezésére vonatkoz6 informaciokat, igy a protokoll-

LIX. EVFOLYAM 2004/3

analizator ember altal is olvashaté formaban képes meg-
jeleniteni a csomagokat. A legtébb protokoll-analizatort
a haldzati vagy szoftveres hibak keresésére, illetve for-
galmi statisztikdk gy(jtésére fejlesztették ki. Kézvetle-
nil nem alkalmazhatdk biztonsagi tulajdonsagok vizs-
galatara, azonban alapvet§ megfigyel6 eszkdzként min-
den halézattal foglalkoz6 szakember hasznalja 6ket.

Elterjedten hasznalt szoftverek:

t cpdunp [8], et her eal .

Forgalom-elemzék (NIDS): a halézati forgalome-
lemz6k passziv halozati eszk6zdk, melyek gyanus te-
vékenység utan kutatva folyamatosan figyelik a
hal6ézati forgalmat. Amennyiben abnormdlis forgalmi
szituaciét vagy illetéktelen behatoladst detektalnak,
riasztjak a haloézat Gzemeltet6jét, vagy automatikus
ellenlépéseket tehetnek. Ezek a rendszerek nem alka-
Imazhatdak kézvetlendl biztonsagi vizsgalatra, de az
altaluk felfedezett incidensek nyoman fény deriilhet
eddig ismeretlen biztonsagi résekre is.

Példa: snort.

Biztonsagi letapogatok (security scanners): ezek
olyan aktiv halézati szoftverek, melyekkel egy adott ha-
I6zat vagy végpont sebezhetfségét lehet felmérni. Lé-
teznek rendszer-specifikus és altalanos letapogatok is.
F& céljuk akar a célhalézat, akar a cél hoszt biztonsagi
réseinek felfedezése.

Az elterjedt szoftverek: Nmap [2], Nessus [1].

Forgalom-generatorok: olyan alapvet § eszkdzok,
melyekkel tetszés szerinti halézati forgalom general-
hat6. Intelligensebb fogralom-generatorok kivalthatnak
egy vagy tdbb kommunikaciés felet vagy tamadét. On-
magukban nem alkalmazhatdak biztonsagi vizsgalatra,
azonban a legtébb biztonsagi tesztel§ szoftvernek ré-
szét képezik.

Biztonsagi réseket kihasznalé programok: céljuk,
hogy ismert biztonsagi réseket hasznaljanak ki, altala-
ban rossz szandékkal. Els6dlegesen tamaddk hasznal-
jak 6ket, de a haldzatbiztonsaggal foglalkozok is fel-
hasznalhatjak azokat egy adott megvaloésitasban levé
biztonsagi hidnyossag demonstralasara, illetve a meg-
felel6 védekezési moddszer kidolgozasara. Hasznalatuk
csak az adott hiba felderitésére terjed ki.

2. A biztonsagi tesztelés
egy uj megkozelitése

Megvizsgalva az eddig kidolgozott biztonsagi ellenérzé
eljarasokat, arra a megallapitasra jutottunk, hogy egy
igen fontos teriilet nincs kell6képpen lefedve. A halé-
zati tamadasok egy része a beékel6désre éplil, azaz a
tamado kett6 vagy tébb jéhiszemd kommunikalo fél ko-
z6tti adataton helyezkedik el. A meglévé modszerek al-
talaban nem képesek megmutatni az ilyen beékel6dé-
ses tamadasok hatdsait, mivel az altaluk alkalmazott
hagyomanyos elrendezésben két fél kommunikal: az
egyik a tesztelés alatt allé implementacié (IUT — Imple-
mentation Under Test), mig a masik maga a teszt esz-
kdz. llyen elrendezés esetén a vizsgald szoftvernek tel-

HiRADASTECHNIKA

jes tudassal kell rendelkeznie a protokollrdl, hogy a tesz-
telés alatt allé6 implementaciéval kommunikalhasson.

A valos életben gyakran el6fordul, hogy tébb veg-
pont bonyolit le forgalmat egy olyan hal6zaton, mely tel-
jesen, vagy részlegesen a tdmadoé kezében van. llyen
esetben a tamadd megfigyelheti a felek kommunikacio-
jat, tetsz6legesen késleltetheti, eldobhatja, mddosithat-
ja csomagjaikat, valamint generalhat tetszése szerinti
csomagokat, akar mas felhasznaldé nevében is.

A meglévé modszerekkel nem, vagy csak nehézke-
sen vizsgalhatdk az e fajta timadasok. Ezekre a szitu-
acidkra dolgoztunk ki egy altalanos, beékelédésre ala-
pozott mddszert. Az altalunk alkalmazott vizsgalo el-
rendezés esetén a teszt szoftver képes végrehajtani
ezeket a modositasokat, igy vizsgalhatéva valik az im-
plementaciok viselkedése beékel ddéses tamadasok
esetén. A teszt szoftver itt az atviteli halézat és a tdma-
do szerepét tolti be. A mddszer alkalmazasaval emulal-
hatéak a halézati problemak is (késleltetés, csomag-
vesztés, bithibak, csomagtébbszérézés). Az elrende-
zés elénye, hogy a teszt szoftvernek nem szikséges
implementalnia a vizsgalandé protokollt.

A kovetkez8 pontban bemutatjuk az altalunk meg-
valdsitott, beékel6déses elrendezésre éplilé biztonsa-
gi ellen6rzésre alkalmazhat6 rendszert.

3. Megvaloésitas

F6 célunk egy olyan keretrendszer megalkotasa volt,
mely altaldnosan alkalmazhat6 halézati protokollok im-
plementacidinak biztonsagi teszteléséhez, beékel6dé-
ses elrendezésben. A tervezés soran az alabbi elvara-
sokat fogalmaztuk meg a rendszerrel szemben:
+ a halézati csomagok kezelése adatkapcsolati szin-
ten, ezzel a protokollfliggetienség biztositasa;

+ alapvetd csomagtovabbitd funkciék megvaldsitasa
(Utvonalvéalasztd és kapcsold funkcidk);

+ a halézati csomagok megkilénbdztetése a felhasz-
nalé altal megfogalmazott szabalyok szerint;

» modularis felépités;

« altalanos programozasi interfész (APIl) biztositasa
és a dinamikus modulok kezelése az egyszerl bé-
vithet6ség érdekében;

« a teszt eszkdz felhasznaloja altal betdltdétt modulok
tetsz6legesen modosithassak a rendszeren keresz-
tilhalad6é csomagokat;

« a felhasznaldé moduljai tetszélegesen allithassak egy
csomag elkildéseinek szamat (hogy emulalhato le-
gyen a csomagvesztés és csomagtébbszordzés);

« a felhasznald kildhessen tetszélegesen 6sszealli-
tott csomagokat;

+ a felhaszndld definidlhasson tetszéleges szamdu al-
lapotgépet, melyeket a rendszer, illetve a felhasz-
nald altal generalt események vezérelhetnek;

+ a felhasznald rendelhessen 6ssze eseménykezeld
fliggvényeket az allapotgépek allapotatmeneteivel,
illetve az allapotok belépési/kilépéesi eseményeivel.

Fejlesztési és futtatasi kdrnyezetnek a C programo-
zasi nyelvet és a Linux operacios rendszert valasztot-
tuk, a rendszernek a MINT nevet adtuk (MINT — Man-
In-themiddle Networking Toolkit).

A rendszer kerneltdl fuggetlen, afelett futd program.
A felépitést és miikodést szemlélteti az 1. abra. A MINT
csomag-olvasé modulja a halézati interfészrdl olvassa
be az interfészre érkezd csomagokat, majd a felhasz-
nalé altal definialt szirési feltételeknek megfeleléket
tovabbitja a csomageloszté modulnak. A csomag-elosz-
t6 sorban meghivja a felhasznalé altal definialt csomag-
kezel6 modulokat, melyek megvizsgalhatjak és tetszés
szerint mddosithatjak a csomagot. A csomag végil a

Felhasznalé
altal definidlt
szlirési szabdly

1. abra A MINT rendszer felépitése

Csomag-beolvasd o —pp Allapotgépek
’ g > Csomag |6
- " modul - 1 YH =
Halbzati . e BPF o .__—“ L
interfész " Csomagsz(irs * . O
»——P Ccsomagkezels
-1 — modul - 2
N : ;
1 L}
H H
Csumag-elnszlﬁ B Lt
H H
R ! !
Csomagklldé ! o
Iterdci6 .- . >
e erdci 2 .] Csomagkezels P ."
:t;r::;; —fe--- ! A aaE L e D EEEEEEEEEEEEEE - modul - N

LIX. EVFOLYAM 2004/3

Halbzati protokollok biztonsagi tesztelése

csomagkilldé modulhoz keriil, mely a kimeneti hal6zati
interfészen elkildi a csomagot.

A fejlesztést gyorsitotta, hogy sok funkciéra mar Ié-
tezik jol m{ikddd, nyilt forraskddu fliggvény-kényvtar. Az
altalunk felhasznalt kényvtarak a | i bpcap (halézati cso-
magok alacsony szint(olvasasa) [8], a | i bnet (ha-
I6zati csomagok dsszeallitdsa és alacsony szinti elkil-
dése) [12] és al i bconfi g (hierarchikus konfiguraciés
fajl feldolgozasa) [13].

Ali bpcap fliggvénykdnyvtar a kernel halézati szol-
galtatasaitol fliggetlenil, alacsony szinten képes a ha-
I6zaton megjelené csomagok beolvasasara. A csoma-
gok hatékony kezelésében segit a csomagsz(reési szol-
galtatasa. Egy magas szint(, kényelmes leironyelven
megfogalmazott sz(rési feltételt (példaul IP cim illetve
TCP port alapu szlrés) képes leforditani a kernelben
talalhaté BPF (Berkley Packet Filter) sz(iré byte-kodja-
ra. Csak az igy bedllitott szlrési feltételeknek megfelel
6 csomagokat tovabbitja a kernel a programnak, igy
nem kell a tesztelés szempontjabdl irrelevans csoma-
gokat kezelni.

Az allapotgépek hatékony megvaldsitdsahoz nem
tal altunk megfeleld, szabadon felhasznalhat6 fligg-
vénykdnyvtarat, ezért magunk készitettlink egyet. Az
allapotgép szoftvermodul a rendszertél fliggetlen, sajat
APl-val és konfiguraciéval rendelkezik, igy akar mas
szoftverekben is alkalmazhat6.

Alapmodulok

Megvaldsitottunk néhany alapveté funkciot ellatéd
csomagmadosité modult:

Minta-modul: egy olyan modul, amely nem télt be
valés csomagkezelési funkcidt, azonban prototipusként
hasznalhaté Gjabb modulok kifejlesztésénél.

Stochasztikus hiba modul: a felhasznal6 altal meg-
adott hibaaranynak (BER — Bit Error Rate) megfeleléen
bithibakat illeszt a forgalomba. Hasznalataval vizsgal-
hat6é a protokollok hibat(ir6 képessége és igy akar bi-
zonyos DoS tdmadasokra val6 érzékenysége is.

Ethernet, TCP/IP fejrész-mdédositd modul: a kap-
csold- és forgalomiranyitéd funkciék megvalésitasahoz
sziikséges az adatkapcsolati réteg cimzésének modo-
sitasa. Képes modositani az Ethernet keretek forras-
és celcimét, az IP csomagok, valamint TCP csomagok
fejrészét. Mddositas utan Ujraszamolja a TCP ellenér-
z60sszeget.

4. Alkalmazasi példa -
HTTPS forgalom elterelése

A MINT rendszer alkalmazasara bemutatunk egy egy-
szer(, de tanulsagos példat. Tekintsiik a webszerverek
és bdngész6k kodzotti biztonsagos kommunikacié pro-
tokolljat, mely nem mas, mint a HTTP az SSL/TLS [7,6]
protokoll f616tt. Az SSL/TLS protokoll feladata a kom-
munikalo felek authentikacioja és a kommunikacié titko-
sitasa.

LIX. EVFOLYAM 2004/3

A HTTPS kommunikacié az SSL/TLS kézfogassal
(handshake) kezdddik. A kliens — esetlinkben a bén-
gészd — elkiildi a ClientHello (izenetet a szervernek. A
szerver valaszul ServerHello (izenet mellett elklldi a sa-
jat tanusitvanyat, majd a ServerHelloDone-al zarja a kom-
munikaciét. A kliens, miutan ellenérizte a tanusitvanyt,
eléallitja a titkositashoz sziikséges adatokat, majd ennek
publikus részét atklldi a szervernek a ClientKeyEx-
change izenetben. Ezen kivill ChangeCipherSpec lze-
nettel jelzi, hogy 6 mar készen all a titkositasra. A kom-
munikacioét a kliens zarja a Finished lizenettel. A szer-
ver miutan kinyerte a kézos, osztott titkot a ClientKey-
Exchange segitségével, Finished lizenettel valaszol. A
handshake utan a kliens és a szerver titkositottan kom-
munikal. Ez térténik példaul egy internetes banki belé-
pésnél is, ahol a felhasznaldi név és jelsz6 mar titkosit-
va ker(l atvitelre.

Forgalom-eitereld szerver
Ny . - o

MINT --\A__-‘(Werw

Web kiiens [~ Neta S —-""
2 ;!

L x Ry ed
Hamis
al szerver

2. abra HTTPS forgalom elterelése — Teszt topoldgia

Tesztlink soran egy felhasznal6 a béngészdje segit-
ségével egy webszerverrel veszi fel a kapcsolatot. Az
alkalmazott HTTPS protokoll authentikacios eljarasa el-
lenére sikerilt megtéveszteniink a felhasznalét. HTTPS-
en vald csatlakozaskor a béngészé ellenérzi az SSL
handshake soran kapott szerver-tanusitvanyt, hogy meg-
bizonyosodjon a szerver valédi kiléte fel6l. Amennyiben
az ellen6rzés sikertelen, figyelmezteti a felhasznalét,
majd megkérdezi, hogy ennek ellenére akarja-e folytat-
ni a kommunikaciot. A felhasznalok sajnalatos moédon
figyelmen kivill hagyjak ezeket a figyelmeztetéseket (sok-
szor annak elolvasasa nélkil), s igy hamis tanusitva-
nyokat is kénnyen elfogadnak.

A tesztlink soran felallitottunk egy hamis webszer-
vert, majd a MINT szoftver segitségével eltereltiik felé
a HTTPS forgalmat (2. dbra). Ezek alapjan lathatjuk,
hogy egy tamadd, akinek siker(lt beékel6dnie a felhasz-
nal6 és a szerver kozé, képes a szervert megszemélye-
siteni. Ehhez egyszerien el kell terelnie a felhasznalé-
tol a valédi szerver iranyaba foly6 forgalmat egy altala
Uzemeltetett hamis szerverre. Amennyiben a hamis szer-
veren a valédinak megfelel§ vagy hasonlé tartalom van,
a tdmado nagy valészinliséggel meg tudja téveszteni a
felhaszndlét. Ezutan a megtévesztett felhasznal6 johi-
szemlien megadhat bizalmas informacidkat, példaul
bankkartyaszamat, jelszavait, melyekkel késébb a tdma-
dé visszaélhet. Egy ilyen tamadas lizenetvaltasait szem-
lélteti a 3. dbra (lasd a kévetkezd oldalon).

Kimutattuk tehat, hogy a TLS protokoll biztonsagi
szolgéltatasai ellenére a felhasznaldé gondatlansaga mi-
att beékel6déses tamadéassal célt érhetnek a tamadok.

HiRADASTECHNIKA

Felhasznalé Bongészd Témadé Hamis Vakdl
szerver szerver
URL megadéasa
| ClientHello
-
ServerHello |.g =
Figyelmeztetés [
L
Tovdbb!
| ClientKeyExchgnge
-
Finished | =
-
Finished
[
Weboldal -
Loginfielsz6 | (titkositva) |-
-
ablak
|-
Login;g:;lszé Loginfjelszé L. | LOgIN/jelszé
megadasa péros elkiildésp mentése
HTTPS
handshake
=
L
Login/jelszé
- paros elkildése
-

3. dbra Megszemélyesitéses tdmadds — Uzenetvéltdsok

5. Osszegzés

Cikkiinkben bemutattunk egy olyan biztonsagi vizsga-
lati médszert, valamint az ezen médszert alkalmazé esz-
kézt, melynek segitségével a tesztelend6 rendszerrdl
eldonthetjik, hogy kdézbeékel6déses tamadasok ese-
tén is megfelel-e a biztonsagi elvarasoknak. Ez az el-
jaras ezen kivil protokollok biztonsagi hibainak felfedé-
sére is alkalmas.

Protokollok tesztelésénél altalaban is nagy segitsé-
get nyujthat az altalunk megvaldsitott keretrendszer,
mivel ezzel olyan helyzeteket tudunk teremteni, ame-
lyek felszinre hozhatjak a protokoll vagy annak megva-
|6sitasanak altalanos hibait. A keretrendszer hasznala-
taval a fejleszt6 a tesztelés szempontjabdl fontos rész-
letekre koncentralhat, anélkiil, hogy az alacsony szint(
csomagkezeléssel vagy allapotgép-reprezentacié meg-
valdsitasaval kellene foglalkoznia.

A beékel6déses modszer és a keretrendszer gyakor-
lati alkalmazhatésagat szemléltette a fent bemutatott
forgalomelterelési példa is.

Irodalom

[1] Nessus — a remote network security scanner,
http://www.nessus.org/

[2] Nmap — Network Security Scanner,
http://www.nmap.org/

[3] The Network Simulator — ns-2,
http://www.isi.edu/nsnam/ns/

[4] TTCN3 — Methods for Testing and Specification (MTS)
The Testing and Test Control Notation version 3,
ETSI Document Nr.: ES 201 873-1.

[5] IEEE Standard 802.11, part 11., 1997.

Wireless LAN Medium Access Control and
Physical Layer Specification.
[6] T. Dierks and C. Allen:
The TLS Protocol, 1999.
FC 2246, Proposed Standard.

[7] Kocher Frier, Karlton:

The SSL 3.0 Protocol, 1996.
Internet Draft, Work in Progress.

[8] The Tecpdump Group: | i bpcap:
Packet capture library
http://www.tcpdump.org/

[9] Gevin Lowe: Casper:

A compiler for the analysis of security protocols,
Journal of Computer Security, 6:53—-84, 1998.
[10] Catherine Meadows:
The NRL Protocol Analyzer: An overview,
Journal of Logic Programming, 26:113-131, 2. 1996.
[11] A. W. Roscoe:
The Theory and Practice of Concurrency,
Prentice Hall, 1998.
[12] Mike D. Schiffman: | i bnet:
A C library for portable packet creation and injection,
http://www.packetfactory.net/libnet
[13] Abraham vd Merwe: | i bconfi g:
A C library for parsing hierarchical configuration files,
http://oasis.frogfoot.net/

="-

"‘% oy + o o i e el e

A pr S r
M*ﬁt AT T

'-rilJ'

LIX. EVFOLYAM 2004/3

