
2 LIX. ÉVFOLYAM 2004/3

1. Protokoll tesztelési módszerek

Informatikai és távközlési rendszereink mindennapos,
megbízható mûködése egyre jobban függ a kommuni-
kációs protokollok és implementációik stabilitásától és
biztonságától. Az infokommunikációs rendszereink ál-
talános biztonságának eléréséhez a protokolloknak
meg kell felelniük bizonyos szintû biztonsági elvárások-
nak, melyek nagyban függenek az adott protokoll alka-
lmazási területétôl. Ezek teljesítéséhez a protokollokat
igen körültekintôen kell megtervezni és megvalósítani.
Mind a tervezési, mind a megvalósítási fázis ki van téve
az emberi hibáknak. Az implementáció során további
veszélyforrásokat hozhatnak be a felhasznált szoftver-
eszközök (például egy hibás függvény-könyvtár felhasz-
nálásakor a könyvtárban levô hibák öröklôdhetnek). A
végterméket (protokoll specifikáció és kész termék) ezért
minden esetben meg kell vizsgálni.

A jelenlegi, tesztelésre alkalmas szoftver és hardver
eszközök egy-egy fô területet céloznak meg az alábbi-
ak közül: konformancia, teljesítmény és biztonság. Lé-
teznek eszközök, melyek a protokoll formális leírását ve-
szik alapul, míg más eszközök a megvalósítást tesztelik
valós vagy emulált környezetben. A vizsgálat módszere
lehet formális verifkáció, szimuláció és a megvalósítás
ellenôrzése. A biztonsági vizsgálatokhoz mind a három
módszert alkalmazzák. Az alábbiakban bemutatunk né-
hány példát ezekre.

1.1. Formális protokoll verifikáció
A formális protokoll verifikáció elsôdleges célja, hogy

már a tervezési fázisban visszacsatolást nyújtson. Így a
protokoll implementációjának elkészítése elôtt fény de-
rülhet a problémákra. Amennyiben a verifikáció hibát
mutat ki, vissza kell lépni a tervezôasztalhoz (WEP [5]).
További alkalmazásként említhetô a már meglévô pro-
tokollok megfelelôségének vizsgálata: formálisan ellen-
ôrizhetô, hogy egy adott protokoll megfelelô-e egy bi-
zonyos célra (például biztosítja-e az újrajátszás vagy a
lehallgatás elleni védelmet).

A protokollok teljesítményének, hibatûrésének és bi-
zonyos biztonsági paraméterek vizsgálatára már létez-
nek formális módszerek. Mivel a formális protokoll verifi-
kációs módszerek a protokollok leírását használják csak
fel, az implementációkban jelentkezô hibák nem detek-
tálhatók segítségükkel. Sok esetben fordult már el ô,
hogy egy protokollt a formális ellenôrzés során bizton-
ságosnak minôsítettek, azonban az implementációba
került programozási hiba – ami amúgy a funkcionalitást
nem befolyásolta – biztonsági szempontból végzetes-
nek bizonyult. Rontja a helyzetet továbbá, hogy egy for-
mális tesztelés során biztonságosnak nyilvánított proto-
koll hamis biztonságérzetet kelt a végfelhasználókban.

A formális ellenôrzéshez szükséges az adott proto-
koll helyes és teljes formális specifikációja, melyet leg-
többször az adott vizsgáló szoftver leírónyelvén kell meg-
fogalmazni. Ilyen leírás elkészítése sok esetben igen
összetett és nagy szakértelmet igénylô feladat. Ez a
folyamat is ki van téve az emberi hibáknak, így elôfor-
dulhatnak hibás pozitív és hibás negatív eredmények is.

A formális módszerek legnagyobb hátránya, hogy a
vizsgálható protokollok halmazát erôsen leszûkítik a ve-
rifikációs eljárások által a protokollokkal szemben tá-
masztott elôfeltételek. Ezen megszorítások sok létezô
és tervezett protokollt kizárnak a vizsgálható protokol-
lok körébôl. További nehézséget jelent, hogy ezek az
algoritmusok nem minden esetben garantálják a véges
futásidôt. A gyakorlatban alkalmazott, többnyire kom-
plex protokollok vizsgálatához igen nagy számítási- és
memóriakapacitásra van szükség.

Megemlítünk néhány, biztonsági szempontból fonto-
sabb, formális ellenôrzô szoftvert: FDR [11], Casper [9],
NRL Protocol Analyzer [10].

1.2. Szimuláció
A szimulációs módszerek igen elterjedtek, távközlési

protokollok teljesítmény-vizsgálatára alkalmazzák a leg-
gyakrabban (például, hogy egy adott protokoll eléggé
hatékony-e), azonban biztonsági vizsgálatok elvégzé-
sére is haszánlhatók ezek a szimulációs eszközök.

Hálózati protokollok biztonsági tesztelése
LÉCZ BALÁZS*, ZÖMBIK LÁSZLÓ**

* Budapesti Mûszaki és Gazdaságtudományi Egyetem, Távközlési és Médiainformatikai Tanszék,
lecz@alpha.tmit.bme.hu

** Ericsson Magyarország, BME-TMIT, laszlo.zombik@ericsson.com

Kulcsszavak: biztonság, imprementációk, forgalomelterelés, konformancia

A protokollok és implementációik viselkedését több szempontból lehet vizsgálni, ezért igen sok tesztelési módszer létezik. A

legszélesebb körben kutatott és alkalmazott módszerek az implementációk konformanciáját és teljesÍtményét vizsgálják. Cik-

künkben a protokollok megvalósításainak biztonsági vizsgálatára koncentrálunk. Ismertetünk egy új, biztonsági tesztelésre

alkalmazható módszert, majd bemutatjuk alkalmazásának lehetôségeit. Végül ismertetjük az általunk megvalósÍtott szoftver-

keretrendszert és bemutatunk néhány példát annak gyakorlati alkalmazására.

Reviewed

A legismertebb hálózati protokoll-szimulációs szoft-
ver az NS2 [3]. Ezzel többek között szolgáltatásbénító,
túlterheléses támadásokat is lehet szimulálni.

1.3. Protokoll implementációk vizsgálata
Különbözô módszerek és eszközök léteznek a pro-

tokollok implementációinak tesztelésére. Minden egyes
módszer a tulajdonságok egy jól körülhatárolható osz-
tályára összpontosít. A protokollok megvalósítását el-
lenôrzô szakemberek a konformanciát és az együtt-
mûködési képességet vizsgáló módszereket alkalmaz-
zák elsôsorban. A hálózatüzemeltetôk által leggyakrab-
ban alkalmazott eszközök a protokoll-analizátorok és a
behatolás-detektáló rendszerek (Intrusion Detection
System – IDS).

A biztonsági ellenôrzô szoftvereket a hálózatbizton-
sági szakemberek és a rosszindulatú támadók egya-
ránt használják. Ide sorolhatók a különbözô biztonsági
letapogatók (security scanner), forgalom-generátorok
és a biztonsági réseket kihasználó programok (security
exploit).

Az alábbiakban néhány mondatban bemutatjuk az
eddig említett módszereket, valamint alkalmazhatósá-
gukat a protokollok biztonsági réseinek kimutatásában.

Konformancia tesztelés: ezzel az eljárással a pro-
tokoll megvalósításának funkcionális helyességét vizs-
gáljuk. A teszt eredménye megmutatja, hogy az adott
implementáció a specifikációnak megfelelôen mûködik-
e. A távközlési ipar által szorgalmazott trend a konfor-
mancia vizsgálat és szoftver-keretrendszerének szabvá-
nyosítása felé mutat. Ennek egyik eredménye a TTCN3
[4]. A biztonsági szempontból fontos hibák egy része
kimutatható ezen módszerek segítségével: a specifiká-
ció félreértelmezésébôl, programmozási hibákból adó-
dó biztonsági rések nagy része felfedezhetô ezzel az
eljárással.

Együttmûködési képesség vizsgálat: ezek a mód-
szerek a különbözô implementációk együttmûködési
képességét vizsgálják. A vizsgálat eredménye egyedül
azt mutatja meg, hogy a két megvalósítás képes-e az
együttmûködésre. Biztonsági rések felfedezésére nem
alkalmas ez a módszer.

Teljesítmény vizsgálat: a teljesítményvizsgálat so-
rán az implementáció viselkedését figyelik különbözô
terhelési feltételek mellett. Fô alkalmazása a különbözô
implementációk teljesítôképességének és hatékonysá-
gának összehasonlítása, illetve a szûk keresztmetsze-
tek felkutatása. Ennek ellenére egy biztonsági szem-
pontból fontos tulajdonság vizsgálatára is használha-
tó: segítségével kimutatható, hogy a protokoll adott
esetben érzékeny-e a túlterheléses (Denial of Service
– DoS) támadásokra, illetve hogy az ez elleni védeke-
zési módszer megfelelôen mûködik-e.

Protokoll-analizátorok: céljuk, hogy valós idôben
megfigyeljék a hálózati forgalmat és el ôre definiált sza-
bályok szerint analizálják a csomagok tartalmát. Ezek a
szabályok tartalmazhatnak protokoll adategységek ér-
telmezésére vonatkozó információkat, így a protokoll-

analizátor ember által is olvasható formában képes meg-
jeleníteni a csomagokat. A legtöbb protokoll-analizátort
a hálózati vagy szoftveres hibák keresésére, illetve for-
galmi statisztikák gyûjtésére fejlesztették ki. Közvetle-
nül nem alkalmazhatók biztonsági tulajdonságok vizs-
gálatára, azonban alapvetô megfigyelô eszközként min-
den hálózattal foglalkozó szakember használja ôket.

Elterjedten használt szoftverek:
tcpdump [8], ethereal.
Forgalom-elemzôk (NIDS): a hálózati forgalome-

lemzôk passzív hálózati eszközök, melyek gyanús te-
vékenység után kutatva folyamatosan figyelik a
hálózati forgalmat. Amennyiben abnormális forgalmi
szituációt vagy illetéktelen behatolást detektálnak,
riasztják a hálózat üzemeltetôjét, vagy automatikus
ellenlépéseket tehetnek. Ezek a rendszerek nem alka-
lmazhatóak közvetlenül biztonsági vizsgálatra, de az
általuk felfedezett incidensek nyomán fény derülhet
eddig ismeretlen biztonsági résekre is.

Példa: snort.
Biztonsági letapogatók (security scanners): ezek

olyan aktív hálózati szoftverek, melyekkel egy adott há-
lózat vagy végpont sebezhetôségét lehet felmérni. Lé-
teznek rendszer-specifikus és általános letapogatók is.
Fô céljuk akár a célhálózat, akár a cél hoszt biztonsági
réseinek felfedezése.

Az elterjedt szoftverek: Nmap [2], Nessus [1].
Forgalom-generátorok: olyan alapvet ô eszközök,

melyekkel tetszés szerinti hálózati forgalom generál-
ható. Intelligensebb fogralom-generátorok kiválthatnak
egy vagy több kommunikációs felet vagy támadót. Ön-
magukban nem alkalmazhatóak biztonsági vizsgálatra,
azonban a legtöbb biztonsági tesztelô szoftvernek ré-
szét képezik.

Biztonsági réseket kihasználó programok: céljuk,
hogy ismert biztonsági réseket használjanak ki, általá-
ban rossz szándékkal. Elsôdlegesen támadók használ-
ják ôket, de a hálózatbiztonsággal foglalkozók is fel-
használhatják azokat egy adott megvalósításban levô
biztonsági hiányosság demonstrálására, illetve a meg-
felelô védekezési módszer kidolgozására. Használatuk
csak az adott hiba felderítésére terjed ki.

2. A biztonsági tesztelés
egy új megközelítése

Megvizsgálva az eddig kidolgozott biztonsági ellenôrzô
eljárásokat, arra a megállapításra jutottunk, hogy egy
igen fontos terület nincs kellôképpen lefedve. A háló-
zati támadások egy része a beékelôdésre épül, azaz a
támadó kettô vagy több jóhiszemû kommunikáló fél kö-
zötti adatúton helyezkedik el. A meglévô módszerek ál-
talában nem képesek megmutatni az ilyen beékelôdé-
ses támadások hatásait, mivel az általuk alkalmazott
hagyományos elrendezésben két fél kommunikál: az
egyik a tesztelés alatt álló implementáció (IUT – Imple-
mentation Under Test), míg a másik maga a teszt esz-
köz. Ilyen elrendezés esetén a vizsgáló szoftvernek tel-

Hálózati protokollok biztonsági tesztelése

LIX. ÉVFOLYAM 2004/3 3

jes tudással kell rendelkeznie a protokollról, hogy a tesz-
telés alatt álló implementációval kommunikálhasson.

A valós életben gyakran elôfordul, hogy több vég-
pont bonyolít le forgalmat egy olyan hálózaton, mely tel-
jesen, vagy részlegesen a támadó kezében van. Ilyen
esetben a támadó megfigyelheti a felek kommunikáció-
ját, tetszôlegesen késleltetheti, eldobhatja, módosíthat-
ja csomagjaikat, valamint generálhat tetszése szerinti
csomagokat, akár más felhasználó nevében is.

A meglévô módszerekkel nem, vagy csak nehézke-
sen vizsgálhatók az e fajta támadások. Ezekre a szitu-
ációkra dolgoztunk ki egy általános, beékelôdésre ala-
pozott módszert. Az általunk alkalmazott vizsgáló el-
rendezés esetén a teszt szoftver képes végrehajtani
ezeket a módosításokat, így vizsgálhatóvá válik az im-
plementációk viselkedése beékel ôdéses támadások
esetén. A teszt szoftver itt az átviteli hálózat és a táma-
dó szerepét tölti be. A módszer alkalmazásával emulál-
hatóak a hálózati problémák is (késleltetés, csomag-
vesztés, bithibák, csomagtöbbszörözés). Az elrende-
zés elônye, hogy a teszt szoftvernek nem szükséges
implementálnia a vizsgálandó protokollt.

A következô pontban bemutatjuk az általunk meg-
valósított, beékelôdéses elrendezésre épûlô biztonsá-
gi ellenôrzésre alkalmazható rendszert.

3. Megvalósítás

Fô célunk egy olyan keretrendszer megalkotása volt,
mely általánosan alkalmazható hálózati protokollok im-
plementációinak biztonsági teszteléséhez, beékelôdé-
ses elrendezésben. A tervezés során az alábbi elvárá-
sokat fogalmaztuk meg a rendszerrel szemben:

• a hálózati csomagok kezelése adatkapcsolati szin-
ten, ezzel a protokollfüggetlenség biztosítása;

• alapvetô csomagtovábbító funkciók megvalósítása
(útvonalválasztó és kapcsoló funkciók);

• a hálózati csomagok megkülönböztetése a felhasz-
náló által megfogalmazott szabályok szerint;

• moduláris felépítés;
• általános programozási interfész (API) biztosítása

és a dinamikus modulok kezelése az egyszerû bô-
víthetôség érdekében;

• a teszt eszköz felhasználója által betöltött modulok
tetszôlegesen módosíthassák a rendszeren keresz-
tülhaladó csomagokat;

• a felhasználó moduljai tetszôlegesen állíthassák egy
csomag elküldéseinek számát (hogy emulálható le-
gyen a csomagvesztés és csomagtöbbszörözés);

• a felhasználó küldhessen tetszôlegesen összeállí-
tott csomagokat;

• a felhasználó definiálhasson tetszôleges számú ál-
lapotgépet, melyeket a rendszer, illetve a felhasz-
náló által generált események vezérelhetnek;

• a felhasználó rendelhessen össze eseménykezelô
függvényeket az állapotgépek állapotátmeneteivel,
illetve az állapotok belépési/kilépési eseményeivel.

Fejlesztési és futtatási környezetnek a C programo-
zási nyelvet és a Linux operációs rendszert választot-
tuk, a rendszernek a MINT nevet adtuk (MINT – Man-
In-themiddle Networking Toolkit).

A rendszer kerneltôl független, afelett futó program.
A felépítést és mûködést szemlélteti az 1. ábra. A MINT
csomag-olvasó modulja a hálózati interfészrôl olvassa
be az interfészre érkezô csomagokat, majd a felhasz-
náló által definiált szûrési feltételeknek megfelelôket
továbbítja a csomagelosztó modulnak. A csomag-elosz-
tó sorban meghívja a felhasználó által definiált csomag-
kezelô modulokat, melyek megvizsgálhatják és tetszés
szerint módosíthatják a csomagot. A csomag végül a

HÍRADÁSTECHNIKA

4 LIX. ÉVFOLYAM 2004/3

1. ábra A MINT rendszer felépítése

csomagküldô modulhoz kerül, mely a kimeneti hálózati
interfészen elküldi a csomagot.

A fejlesztést gyorsította, hogy sok funkcióra már lé-
tezik jól mûködô, nyílt forráskódú függvény-könyvtár. Az
általunk felhasznált könyvtárak a libpcap (hálózati cso-
magok alacsony szintû olvasása) [8], a libnet (há-
lózati csomagok összeállítása és alacsony szintû elkül-
dése) [12] és a libconfig (hierarchikus konfigurációs
fájl feldolgozása) [13].

A libpcap függvénykönyvtár a kernel hálózati szol-
gáltatásaitól függetlenül, alacsony szinten képes a há-
lózaton megjelenô csomagok beolvasására. A csoma-
gok hatékony kezelésében segít a csomagszûrési szol-
gáltatása. Egy magas szintû, kényelmes leírónyelven
megfogalmazott szûrési feltételt (például IP cím illetve
TCP port alapú szûrés) képes lefordítani a kernelben
található BPF (Berkley Packet Filter) szûrô byte-kódjá-
ra. Csak az így beállított szûrési feltételeknek megfelel
ô csomagokat továbbítja a kernel a programnak, így
nem kell a tesztelés szempontjából irreleváns csoma-
gokat kezelni.

Az állapotgépek hatékony megvalósításához nem
tal áltunk megfelelô, szabadon felhasználható függ-
vénykönyvtárat, ezért magunk készítettünk egyet. Az
állapotgép szoftvermodul a rendszertôl független, saját
API-val és konfigurációval rendelkezik, így akár más
szoftverekben is alkalmazható.

Alapmodulok

Megvalósítottunk néhány alapvetô funkciót ellátó
csomagmódosító modult:

Minta-modul: egy olyan modul, amely nem tölt be
valós csomagkezelési funkciót, azonban prototípusként
használható újabb modulok kifejlesztésénél.

Stochasztikus hiba modul: a felhasználó által meg-
adott hibaaránynak (BER – Bit Error Rate) megfelelôen
bithibákat illeszt a forgalomba. Használatával vizsgál-
ható a protokollok hibatûrô képessége és így akár bi-
zonyos DoS támadásokra való érzékenysége is.

Ethernet, TCP/IP fejrész-módosító modul: a kap-
csoló- és forgalomirányító funkciók megvalósításához
szükséges az adatkapcsolati réteg címzésének módo-
sítása. Képes módosítani az Ethernet keretek forrás-
és célcímét, az IP csomagok, valamint TCP csomagok
fejrészét. Módosítás után újraszámolja a TCP ellenôr-
zôösszeget.

4. Alkalmazási példa –
HTTPS forgalom elterelése

A MINT rendszer alkalmazására bemutatunk egy egy-
szerû, de tanulságos példát. Tekintsük a webszerverek
és böngészôk közötti biztonságos kommunikáció pro-
tokollját, mely nem más, mint a HTTP az SSL/TLS [7,6]
protokoll fölött. Az SSL/TLS protokoll feladata a kom-
munikáló felek authentikációja és a kommunikáció titko-
sítása.

A HTTPS kommunikáció az SSL/TLS kézfogással
(handshake) kezdôdik. A kliens – esetünkben a bön-
gészô – elküldi a ClientHello üzenetet a szervernek. A
szerver válaszul ServerHello üzenet mellett elküldi a sa-
ját tanusítványát, majd a ServerHelloDone-al zárja a kom-
munikációt. A kliens, miután ellenôrizte a tanusítványt,
elôállítja a titkosításhoz szükséges adatokat, majd ennek
publikus részét átküldi a szervernek a ClientKeyEx-
change üzenetben. Ezen kívül ChangeCipherSpec üze-
nettel jelzi, hogy ô már készen áll a titkosításra. A kom-
munikációt a kliens zárja a Finished üzenettel. A szer-
ver miután kinyerte a közös, osztott titkot a ClientKey-
Exchange segítségével, Finished üzenettel válaszol. A
handshake után a kliens és a szerver titkosítottan kom-
munikál. Ez történik például egy internetes banki belé-
pésnél is, ahol a felhasználói név és jelszó már titkosít-
va kerül átvitelre.

Tesztünk során egy felhasználó a böngészôje segít-
ségével egy webszerverrel veszi fel a kapcsolatot. Az
alkalmazott HTTPS protokoll authentikációs eljárása el-
lenére sikerült megtévesztenünk a felhasználót. HTTPS-
en való csatlakozáskor a böngészô ellenôrzi az SSL
handshake során kapott szerver-tanusítványt, hogy meg-
bizonyosodjon a szerver valódi kiléte felôl. Amennyiben
az ellenôrzés sikertelen, figyelmezteti a felhasználót,
majd megkérdezi, hogy ennek ellenére akarja-e folytat-
ni a kommunikációt. A felhasználók sajnálatos módon
figyelmen kívül hagyják ezeket a figyelmeztetéseket (sok-
szor annak elolvasása nélkül), s így hamis tanusítvá-
nyokat is könnyen elfogadnak.

A tesztünk során felállítottunk egy hamis webszer-
vert, majd a MINT szoftver segítségével eltereltük felé
a HTTPS forgalmat (2. ábra). Ezek alapján láthatjuk,
hogy egy támadó, akinek sikerült beékelôdnie a felhasz-
náló és a szerver közé, képes a szervert megszemélye-
síteni. Ehhez egyszerûen el kell terelnie a felhasználó-
tól a valódi szerver irányába folyó forgalmat egy általa
üzemeltetett hamis szerverre. Amennyiben a hamis szer-
veren a valódinak megfelelô vagy hasonló tartalom van,
a támadó nagy valószínûséggel meg tudja téveszteni a
felhasználót. Ezután a megtévesztett felhasználó jóhi-
szemûen megadhat bizalmas információkat, például
bankkártyaszámát, jelszavait, melyekkel késôbb a táma-
dó visszaélhet. Egy ilyen támadás üzenetváltásait szem-
lélteti a 3. ábra (lásd a következô oldalon).

Kimutattuk tehát, hogy a TLS protokoll biztonsági
szolgáltatásai ellenére a felhasználó gondatlansága mi-
att beékelôdéses támadással célt érhetnek a támadók.

Hálózati protokollok biztonsági tesztelése

LIX. ÉVFOLYAM 2004/3 5

2. ábra HTTPS forgalom elterelése – Teszt topológia

3. ábra Megszemélyesítéses támadás – Üzenetváltások

5. Összegzés

Cikkünkben bemutattunk egy olyan biztonsági vizsgá-
lati módszert, valamint az ezen módszert alkalmazó esz-
közt, melynek segítségével a tesztelendô rendszerrôl
eldönthetjük, hogy közbeékelôdéses támadások ese-
tén is megfelel-e a biztonsági elvárásoknak. Ez az el-
járás ezen kívül protokollok biztonsági hibáinak felfedé-
sére is alkalmas.

Protokollok tesztelésénél általában is nagy segítsé-
get nyújthat az általunk megvalósított keretrendszer,
mivel ezzel olyan helyzeteket tudunk teremteni, ame-
lyek felszínre hozhatják a protokoll vagy annak megva-
lósításának általános hibáit. A keretrendszer használa-
tával a fejlesztô a tesztelés szempontjából fontos rész-
letekre koncentrálhat, anélkül, hogy az alacsony szintû
csomagkezeléssel vagy állapotgép-reprezentáció meg-
valósításával kellene foglalkoznia.

A beékelôdéses módszer és a keretrendszer gyakor-
lati alkalmazhatóságát szemléltette a fent bemutatott
forgalomelterelési példa is.

Irodalom

[1] Nessus – a remote network security scanner,
http://www.nessus.org/

[2] Nmap – Network Security Scanner,
http://www.nmap.org/

[3] The Network Simulator – ns-2,
http://www.isi.edu/nsnam/ns/

[4] TTCN3 – Methods for Testing and Specification (MTS)
The Testing and Test Control Notation version 3,
ETSI Document Nr.: ES 201 873-1.

[5] IEEE Standard 802.11, part 11., 1997.
Wireless LAN Medium Access Control and
Physical Layer Specification.

[6] T. Dierks and C. Allen:
The TLS Protocol, 1999.
FC 2246, Proposed Standard.

[7] Kocher Frier, Karlton:
The SSL 3.0 Protocol, 1996.
Internet Draft, Work in Progress.

[8] The Tcpdump Group: libpcap:
Packet capture library
http://www.tcpdump.org/

[9] Gevin Lowe: Casper:
A compiler for the analysis of security protocols,
Journal of Computer Security, 6:53–84, 1998.

[10] Catherine Meadows:
The NRL Protocol Analyzer: An overview,
Journal of Logic Programming, 26:113–131, 2. 1996.

[11] A. W. Roscoe:
The Theory and Practice of Concurrency,
Prentice Hall, 1998.

[12] Mike D. Schiffman: libnet:
A C library for portable packet creation and injection,
http://www.packetfactory.net/libnet

[13] Abraham vd Merwe: libconfig:
A C library for parsing hierarchical configuration files,
http://oasis.frogfoot.net/

HÍRADÁSTECHNIKA

6 LIX. ÉVFOLYAM 2004/3

